@phdthesis{Uhr2016, author = {Uhr, Linda}, title = {Technische Enzyme in Backwaren}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-96432}, school = {Universit{\"a}t Potsdam}, pages = {180}, year = {2016}, abstract = {Die sensorisch einwandfreie, konstant gute Qualit{\"a}t von Backprodukten, die beim Verbraucher einen hohen Stellenwert hat, wird maßgeblich durch den Gehalt endogener Getreideenzyme beeinflusst. Seit dem Auftreten z{\"u}chtungsbedingter Enzymdefizite ist der Einsatz technischer Enzyme zur Gew{\"a}hrleistung dieser geforderten Qualit{\"a}t eine feste Gr{\"o}ße in der Backwarenindustrie. Lebensmittelrechtlich werden technische Enzyme nicht als Zutat betrachtet, da sie theoretisch w{\"a}hrend des Backprozesses umgesetzt werden und im Endprodukt keine technologische Wirkung mehr zeigen. Vor allem in gebackenen Produkten bedarf es der Pr{\"u}fung, dass die eingesetzten technischen Enzyme nicht mehr als Zutat vorliegen und sich somit einer potentiellen Deklarationspflicht entziehen. Zur Gew{\"a}hrleistung der Wirtschaftlichkeit muss der quantitative Einsatz technischer Enzyme in der Backwarenindustrie gesteuert werden, um optimale Effekte zu erzielen und Kosten zu sparen. Ziel dieser Arbeit war daher die Entwicklung eines Analysenverfahrens, das den simultanen Nachweis verschiedener technischer Enzyme und deren Quantifizierung im Spurenbereich auch in gebackenen Produkten erm{\"o}glicht. F{\"u}r die Einsch{\"a}tzung der Wirkung der technischen Enzyme Fungamyl (Novozymes), Amylase TXL (ASA Spezialenzyme GmbH) sowie Lipase FE-01 (ASA Spezialenzyme GmbH) wurden Backversuche durchgef{\"u}hrt, die zeigten, dass Fungamyl und Amylase TXL zu einer verbesserten Brotqualit{\"a}t (Volumenausbeute, Feuchtegehalt, Sensorik) beitrugen. Die Zugabe der Lipase FE-01 f{\"u}hrte zu einer vermehrten Bildung freier Fetts{\"a}uren und wirkte sich negativ auf die sensorische Brotqualit{\"a}t aus. Dieser bisher nicht beschriebene Effekt konnte auf die Nutzung eines Spezial{\"o}ls als Backzutat zur{\"u}ckgef{\"u}hrt werden, welches ausschließlich aus ges{\"a}ttigten Fetts{\"a}uren besteht. Dies best{\"a}tigt die Bedeutung der Auswahl eines geeigneten Fettes beim Zusatz technischer Lipase zum Backprozess. Um die in Fungamyl und Lipase FE-01 enthaltenen Enzyme zu identifizieren, wurden SDS-PAGE und anschließender In-Gel-Verdau angewendet um die Analyse proteolytisch gespaltener Proteine mit MALDI-TOF-MS zu erm{\"o}glichen. Es konnte gezeigt werden, dass Fungamyl ein Gemisch aus 9,8 \% alpha-Amylase (Aspergillus oryzae) und 5,2 \% Endo-1,4-Xylanase (Thermomyces lanuginosus) enth{\"a}lt. Lipase FE-01 besteht aus der Lipase (Thermomyces lanuginosus), Amylase TXL wurde als alpha-Amylase (Aspergillus oryzae) identifiziert. Zur Analyse der technischen Enzyme in Backwaren wurde aufgrund seiner Robustheit und Sensitivit{\"a}t das Verfahren der LC-MS/MS gew{\"a}hlt. Die Entwicklung einer solchen Methode zur Detektion spezifischer Peptide erm{\"o}glichte den qualitativen Nachweis der 3 Enzyme alpha-Amylase (Aspergillus oryzae), Endo-1,4-Xylanase (Thermomyces lanuginosus) und Lipase (Thermomyces lanuginosus). Durch eine lineare Kalibrierung aus synthetisch hergestellten Peptiden unter Einbeziehung eines Protein-Internen-Standards sowie isotopenmarkierter Peptidstandards erfolgte dar{\"u}ber hinaus die quantitative Bestimmung in selbst hergestellten Referenzmaterialien (Weizenmehl, Toastbrot und Biskuitkeks). In weniger als 20 Minuten Messzeit kann das Enzym alpha-Amylase ab einer Konzentration von 2,58 mg/kg (Mehl, Keks), bzw. 7,61 mg/kg (Brot) quantitativ nachgewiesen werden. Zeitgleich k{\"o}nnen die Enzyme Endo-1,4-Xylanase ab einer Konzentration von 7,75 mg/kg (Brot), 3,64 mg/kg (Keks) bzw. 15,60 mg/kg (Mehl) sowie Lipase ab einer Konzentration von 1,26 mg/kg (Mehl, Keks), bzw. 2,68 mg/kg (Brot) quantifiziert werden. Die Methode wurde nach allgemein verwendeten Richtlinien im Zuge einer Validierung statistisch gepr{\"u}ft und lieferte sehr robuste und reproduzierbare quantitative Werte mit Wiederfindungsraten zwischen 50 \% und 122 \%. Das prim{\"a}re Ziel dieser Arbeit, die Entwicklung eines quantitativen Multiparameterverfahrens zum Nachweis technischer Enzyme in Backwaren, wurde somit erfolgreich umgesetzt.}, language = {de} } @phdthesis{Riedel2018, author = {Riedel, Marc}, title = {Photonic wiring of enzymatic reactions to photoactive entities for the construction of biohybrid electrodes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-417280}, school = {Universit{\"a}t Potsdam}, pages = {VIII, 168}, year = {2018}, abstract = {In this work, different strategies for the construction of biohybrid photoelectrodes are investigated and have been evaluated according to their intrinsic catalytic activity for the oxidation of the cofactor NADH or for the connection with the enzymes PQQ glucose dehydrogenase (PQQ-GDH), FAD-dependent glucose dehydrogenase (FAD-GDH) and fructose dehydrogenase (FDH). The light-controlled oxidation of NADH has been analyzed with InGaN/GaN nanowire-modified electrodes. Upon illumination with visible light the InGaN/GaN nanowires generate an anodic photocurrent, which increases in a concentration-dependent manner in the presence of NADH, thus allowing determination of the cofactor. Furthermore, different approaches for the connection of enzymes to quantum dot (QD)-modified electrodes via small redox molecules or redox polymers have been analyzed and discussed. First, interaction studies with diffusible redox mediators such as hexacyanoferrate(II) and ferrocenecarboxylic acid have been performed with CdSe/ZnS QD-modified gold electrodes to build up photoelectrochemical signal chains between QDs and the enzymes FDH and PQQ-GDH. In the presence of substrate and under illumination of the electrode, electrons are transferred from the enzyme via the redox mediators to the QDs. The resulting photocurrent is dependent on the substrate concentration and allows a quantification of the fructose and glucose content in solution. A first attempt with immobilized redox mediator, i.e. ferrocenecarboxylic acid chemically coupled to PQQ-GDH and attached to QD-modified gold electrodes, reveal the potential to build up photoelectrochemical signal chains even without diffusible redox mediators in solution. However, this approach results in a significant deteriorated photocurrent response compared to the situation with diffusing mediators. In order to improve the photoelectrochemical performance of such redox mediator-based, light-switchable signal chains, an osmium complex-containing redox polymer has been evaluated as electron relay for the electronic linkage between QDs and enzymes. The redox polymer allows the stable immobilization of the enzyme and the efficient wiring with the QD-modified electrode. In addition, a 3D inverse opal TiO2 (IO-TiO2) electrode has been used for the integration of PbS QDs, redox polymer and FAD-GDH in order to increase the electrode surface. This results in a significantly improved photocurrent response, a quite low onset potential for the substrate oxidation and a broader glucose detection range as compared to the approach with ferrocenecarboxylic acid and PQQ-GDH immobilized on CdSe/ZnS QD-modified gold electrodes. Furthermore, IO-TiO2 electrodes are used to integrate sulfonated polyanilines (PMSA1) and PQQ-GDH, and to investigate the direct interaction between the polymer and the enzyme for the light-switchable detection of glucose. While PMSA1 provides visible light excitation and ensures the efficient connection between the IO-TiO2 electrode and the biocatalytic entity, PQQ-GDH enables the oxidation of glucose. Here, the IO-TiO2 electrodes with pores of approximately 650 nm provide a suitable interface and morphology, which is required for a stable and functional assembly of the polymer and enzyme. The successful integration of the polymer and the enzyme can be confirmed by the formation of a glucose-dependent anodic photocurrent. In conclusion, this work provides insights into the design of photoelectrodes and presents different strategies for the efficient coupling of redox enzymes to photoactive entities, which allows for light-directed sensing and provides the basis for the generation of power from sun light and energy-rich compounds.}, language = {en} } @misc{FerenzPeterBerg1983, author = {Ferenz, Hans-J{\"u}rgen and Peter, Martin G. and Berg, Dieter}, title = {Inhibition of farnesoic acid methyltransferase by sinefungin}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17016}, year = {1983}, abstract = {Sinefungin inhibited the S-adenosylmethionine-dependent farnesoic acid methyltransferase in a cell-free system containing a homogenate of corpora allata from female locusts, Locusta migratoria. The enzyme catalyzed the penultimate step of juvenile hormone biosynthesis in the insects. Culturing corpora allata in the presence of sinefungin greatly suppressed juvenile hormone production. The following in vivo effects were visible after injection of the inhibitor: increase in mortality and reduction of total haemolymph protein liter and ovary fresh weight, as well as length of terminal oocytes. Attempts to reverse these effects by topical application of the juvenile hormone analog ZR-515 (methoprene) were only partly successful. Therefore, the in vivo effects may be due to a general inhibition of methyltransferase enzymes in the insect. Sinefungin appeared to be of potential interest as the first representative of a new class of insect growth regulators.}, language = {en} } @phdthesis{Pruefer2023, author = {Pr{\"u}fer, Mareike}, title = {Charakterisierung und wechselfeldgest{\"u}tzte Herstellung von Enzym-Nanoarrays}, doi = {10.25932/publishup-61232}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-612329}, school = {Universit{\"a}t Potsdam}, pages = {104}, year = {2023}, abstract = {Dielektrophorese ist die Manipulation polarisierbarer Partikel durch inhomogene elektrische Wechselfelder. In dieser Arbeit wurden drei verschiedene Enzyme durch Dielektrophorese immobilisiert und anschließend hinsichtlich ihrer katalytischen Aktivit{\"a}t untersucht: Meerrettichperoxidase, Cholinoxidase aus Alcaligenes sp. und Glucoseoxidase aus Aspergillus niger. Die Immobilisierung erfolgte durch Dielektrophorese auf nano-Elektrodenarrays aus Wolfram-Zylindern mit 500 nm Durchmesser oder aus Titannitrid-Ringen mit 20 nm Breite. Die Immobilisierung der Enzyme konnte fluoreszenzmikroskopisch entweder anhand der intrinsischen Fluoreszenz oder aufgrund einer Fluoreszenzmarkierung vor oder nach der Immobilisierung f{\"u}r alle getesteten Enzyme nachgewiesen werden. Die Messung der Enzymaktivit{\"a}t erfolgte quantitativ durch den direkten oder indirekten Nachweis des gebildeten Produktes oder, im Falle der Cholinoxidase, durch Beobachtung der intrinsischen Fluoreszenz des Cofaktors FAD, die vom Oxidationszustand dieses Enzyms abh{\"a}ngt. F{\"u}r die Meerrettichperoxidase konnte so eine hohe erhaltene Enzymaktivit{\"a}t nach der Immobilisierung nachgewiesen werden. Die Aktivit{\"a}t der permanent immobilisierten Fraktion der Meerrettichperoxidase entsprach bis zu 47 \% der h{\"o}chstm{\"o}glichen Aktivit{\"a}t einer Monolage dieses Enzyms auf den Elektroden des Chips. Diese Aktivit{\"a}t kann als aktive, aber zuf{\"a}llig gegen{\"u}ber der Oberfl{\"a}che ausgerichtete Enzymschicht interpretiert werden. F{\"u}r die permanent immobilisierte Glucoseoxidase wurde nur eine Aktivit{\"a}t entsprechend <1,3 \% der Aktivit{\"a}t einer solchen Enzymschicht detektiert, w{\"a}hrend f{\"u}r die immobilisierte Cholinoxidase gar keine Aktivit{\"a}t nachgewiesen werden konnte. Die Aktivit{\"a}t der durch DEP immobilisierten Enzyme konnte somit quantitativ bestimmt werden. Der Anteil an erhaltener Aktivit{\"a}t h{\"a}ngt dabei stark vom verwendeten Enzym ab.}, language = {de} } @phdthesis{Hasnat2021, author = {Hasnat, Muhammad Abrar}, title = {A-Type Carrier Proteins are involved in [4Fe-4S] Cluster insertion into the Radical S-adenosylmethionine (SAM) Protein MoaA and other molybdoenzymes}, doi = {10.25932/publishup-53079}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-530791}, school = {Universit{\"a}t Potsdam}, pages = {200}, year = {2021}, abstract = {Iron-sulfur clusters are essential enzyme cofactors. The most common and stable clusters are [2Fe-2S] and [4Fe-4S] that are found in nature. They are involved in crucial biological processes like respiration, gene regulation, protein translation, replication and DNA repair in prokaryotes and eukaryotes. In Escherichia coli, Fe-S clusters are essential for molybdenum cofactor (Moco) biosynthesis, which is a ubiquitous and highly conserved pathway. The first step of Moco biosynthesis is catalyzed by the MoaA protein to produce cyclic pyranopterin monophosphate (cPMP) from 5'GTP. MoaA is a [4Fe-4S] cluster containing radical S-adenosyl-L-methionine (SAM) enzyme. The focus of this study was to investigate Fe-S cluster insertion into MoaA under nitrate and TMAO respiratory conditions using E. coli as a model organism. Nitrate and TMAO respiration usually occur under anaerobic conditions, where oxygen is depleted. Under these conditions, E. coli uses nitrate and TMAO as terminal electron. Previous studies revealed that Fe-S cluster insertion is performed by Fe-S cluster carrier proteins. In E. coli, these proteins are known as A-type carrier proteins (ATC) by phylogenomic and genetic studies. So far, three of them have been characterized in detail in E. coli, namely IscA, SufA, and ErpA. This study shows that ErpA and IscA are involved in Fe-S cluster insertion into MoaA under nitrate and TMAO respiratory conditions. ErpA and IscA can partially replace each other in their role to provide [4Fe-4S] clusters for MoaA. SufA is not able to replace the functions of IscA or ErpA under nitrate respiratory conditions. Nitrate reductase is a molybdoenzyme that coordinates Moco and Fe-S clusters. Under nitrate respiratory conditions, the expression of nitrate reductase is significantly increased in E. coli. Nitrate reductase is encoded in narGHJI genes, the expression of which is regulated by the transcriptional regulator, fumarate and nitrate reduction (FNR). The activation of FNR under conditions of nitrate respiration requires one [4Fe-4S] cluster. In this part of the study, we analyzed the insertion of Fe-S cluster into FNR for the expression of narGHJI genes in E. coli. The results indicate that ErpA is essential for the FNR-dependent expression of the narGHJI genes, a role that can be replaced partially by IscA and SufA when they are produced sufficiently under the conditions tested. This observation suggests that ErpA is indirectly regulating nitrate reductase expression via inserting Fe-S clusters into FNR. Most molybdoenzymes are complex multi-subunit and multi-cofactor-containing enzymes that coordinate Fe-S clusters, which are functioning as electron transfer chains for catalysis. In E. coli, periplasmic aldehyde oxidoreductase (PaoAC) is a heterotrimeric molybdoenzyme that consists of flavin, two [2Fe-2S], one [4Fe-4S] cluster and Moco. In the last part of this study, we investigated the insertion of Fe-S clusters into E. coli periplasmic aldehyde oxidoreductase (PaoAC). The results show that SufA and ErpA are involved in inserting [4Fe-4S] and [2Fe-2S] clusters into PaoABC, respectively under aerobic respiratory conditions.}, language = {en} }