@article{MeyerEbelingEisenhaueretal.2016, author = {Meyer, Sebastian T. and Ebeling, Anne and Eisenhauer, Nico and Hertzog, Lionel and Hillebrand, Helmut and Milcu, Alexandru and Pompe, Sven and Abbas, Maike and Bessler, Holger and Buchmann, Nina and De Luca, Enrica and Engels, Christof and Fischer, Markus and Gleixner, Gerd and Hudewenz, Anika and Klein, Alexandra-Maria and de Kroon, Hans and Leimer, Sophia and Loranger, Hannah and Mommer, Liesje and Oelmann, Yvonne and Ravenek, Janneke M. and Roscher, Christiane and Rottstock, Tanja and Scherber, Christoph and Scherer-Lorenzen, Michael and Scheu, Stefan and Schmid, Bernhard and Schulze, Ernst-Detlef and Staudler, Andrea and Strecker, Tanja and Temperton, Vicky and Tscharntke, Teja and Vogel, Anja and Voigt, Winfried and Weigelt, Alexandra and Wilcke, Wolfgang and Weisser, Wolfgang W.}, title = {Effects of biodiversity strengthen over time as ecosystem functioning declines at low and increases at high biodiversity}, series = {Ecosphere : the magazine of the International Ecology University}, volume = {7}, journal = {Ecosphere : the magazine of the International Ecology University}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {2150-8925}, doi = {10.1002/ecs2.1619}, pages = {14}, year = {2016}, language = {en} } @misc{MulderBoitMorietal.2012, author = {Mulder, Christian and Boit, Alice and Mori, Shigeta and Vonk, J. Arie and Dyer, Scott D. and Faggiano, Leslie and Geisen, Stefan and Gonzalez, Angelica L. and Kaspari, Michael and Lavorel, Sandra and Marquet, Pablo A. and Rossberg, Axel G. and Sterner, Robert W. and Voigt, Winfried and Wall, Diana H.}, title = {Distributional (In)Congruence of Biodiversity-Ecosystem Functioning}, series = {Advances in ecological research}, volume = {46}, journal = {Advances in ecological research}, editor = {Jacob, U and Woodward, G}, publisher = {Elsevier}, address = {San Diego}, isbn = {978-0-12-396992-7}, issn = {0065-2504}, doi = {10.1016/B978-0-12-396992-7.00001-0}, pages = {1 -- 88}, year = {2012}, abstract = {The majority of research on biodiversity ecosystem functioning in laboratories has concentrated on a few traits, but there is increasing evidence from the field that functional diversity controls ecosystem functioning more often than does species number. Given the importance of traits as predictors of niche complementarity and community structures, we (1) examine how the diversity sensu lato of forest trees, freshwater fishes and soil invertebrates might support ecosystem functioning and (2) discuss the relevance of productive biota for monophyletic assemblages (taxocenes). In terrestrial ecosystems, correlating traits to abiotic factors is complicated by the appropriate choice of body-size distributions. Angiosperm and gymnosperm trees, for example, show metabolic incongruences in their respiration rates despite their pronounced macroecological scaling. Scaling heterotrophic organisms within their monophyletic assemblages seems more difficult than scaling autotrophs: in contrast to the generally observed decline of mass-specific metabolic rates with body mass within metazoans, soil organisms such as protozoans show opposite mass-specific trends. At the community level, the resource demand of metazoans shapes multitrophic interactions. Hence, population densities and their food web relationships reflect functional diversity, but the influence of biodiversity on stability and ecosystem functioning remains less clear. We focused on fishes in 18 riverine food webs, where the ratio of primary versus secondary extinctions (hereafter, 'extinction partitioning') summarizes the responses of fish communities to primary species loss (deletions) and its consequences. Based on extinction partitioning, our high-diversity food webs were just as (or even more) vulnerable to extinctions as low-diversity food webs. Our analysis allows us to assess consequences of the relocation or removal of fish species and to help with decision-making in sustainable river management. The study highlights that the topology of food webs (and not simply taxonomic diversity) plays a greater role in stabilizing the food web and enhancing ecological services than is currently acknowledged.}, language = {en} } @article{ScherberEisenhauerWeisseretal.2010, author = {Scherber, Christoph and Eisenhauer, Nico and Weisser, Wolfgang W. and Schmid, Bernhard and Voigt, Winfried and Fischer, Markus and Schukze, Ernst-Detlef and Roscher, Christiane and Weigelt, Alexandra and Allan, Eric and Beßler, Holger and Bonkowski, Michael and Buchmann, Nina and Buscot, Fran{\c{c}}ois and Clement, Lars W. and Ebeling, Anne and Engels, Christof and Halle, Stefan and Kertscher, Ilona and Klein, Alexandra-Maria and Koller, Robert and K{\"o}nig, Stephan and Kowalski, Esther and Kummer, Volker and Kuu, Annely and Lange, Markus and Lauterbach, Dirk}, title = {Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment}, issn = {0028-0836}, year = {2010}, language = {en} } @article{MeyerPtacnikHillebrandetal.2017, author = {Meyer, Sebastian Tobias and Ptacnik, Robert and Hillebrand, Helmut and Bessler, Holger and Buchmann, Nina and Ebeling, Anne and Eisenhauer, Nico and Engels, Christof and Fischer, Markus and Halle, Stefan and Klein, Alexandra-Maria and Oelmann, Yvonne and Roscher, Christiane and Rottstock, Tanja and Scherber, Christoph and Scheu, Stefan and Schmid, Bernhard and Schulze, Ernst-Detlef and Temperton, Vicky M. and Tscharntke, Teja and Voigt, Winfried and Weigelt, Alexandra and Wilcke, Wolfgang and Weisser, Wolfgang W.}, title = {Biodiversity-multifunctionality relationships depend on identity and number of measured functions}, series = {Nature Ecology \& Evolution}, volume = {2}, journal = {Nature Ecology \& Evolution}, number = {1}, publisher = {Nature Publ. Group}, address = {London}, issn = {2397-334X}, doi = {10.1038/s41559-017-0391-4}, pages = {44 -- 49}, year = {2017}, abstract = {Biodiversity ensures ecosystem functioning and provisioning of ecosystem services, but it remains unclear how biodiversity-ecosystem multifunctionality relationships depend on the identity and number of functions considered. Here, we demonstrate that ecosystem multifunctionality, based on 82 indicator variables of ecosystem functions in a grassland biodiversity experiment, increases strongly with increasing biodiversity. Analysing subsets of functions showed that the effects of biodiversity on multifunctionality were stronger when more functions were included and that the strength of the biodiversity effects depended on the identity of the functions included. Limits to multifunctionality arose from negative correlations among functions and functions that were not correlated with biodiversity. Our findings underline that the management of ecosystems for the protection of biodiversity cannot be replaced by managing for particular ecosystem functions or services and emphasize the need for specific management to protect biodiversity. More plant species from the experimental pool of 60 species contributed to functioning when more functions were considered. An individual contribution to multifunctionality could be demonstrated for only a fraction of the species.}, language = {en} } @article{AllanWeisserFischeretal.2013, author = {Allan, Eric and Weisser, Wolfgang W. and Fischer, Markus and Schulze, Ernst-Detlef and Weigelt, Alexandra and Roscher, Christiane and Baade, Jussi and Barnard, Romain L. and Bessler, Holger and Buchmann, Nina and Ebeling, Anne and Eisenhauer, Nico and Engels, Christof and Fergus, Alexander J. F. and Gleixner, Gerd and Gubsch, Marlen and Halle, Stefan and Klein, Alexandra-Maria and Kertscher, Ilona and Kuu, Annely and Lange, Markus and Le Roux, Xavier and Meyer, Sebastian T. and Migunova, Varvara D. and Milcu, Alexandru and Niklaus, Pascal A. and Oelmann, Yvonne and Pasalic, Esther and Petermann, Jana S. and Poly, Franck and Rottstock, Tanja and Sabais, Alexander C. W. and Scherber, Christoph and Scherer-Lorenzen, Michael and Scheu, Stefan and Steinbeiss, Sibylle and Schwichtenberg, Guido and Temperton, Vicky and Tscharntke, Teja and Voigt, Winfried and Wilcke, Wolfgang and Wirth, Christian and Schmid, Bernhard}, title = {A comparison of the strength of biodiversity effects across multiple functions}, series = {Oecologia}, volume = {173}, journal = {Oecologia}, number = {1}, publisher = {Springer}, address = {New York}, issn = {0029-8549}, doi = {10.1007/s00442-012-2589-0}, pages = {223 -- 237}, year = {2013}, abstract = {In order to predict which ecosystem functions are most at risk from biodiversity loss, meta-analyses have generalised results from biodiversity experiments over different sites and ecosystem types. In contrast, comparing the strength of biodiversity effects across a large number of ecosystem processes measured in a single experiment permits more direct comparisons. Here, we present an analysis of 418 separate measures of 38 ecosystem processes. Overall, 45 \% of processes were significantly affected by plant species richness, suggesting that, while diversity affects a large number of processes not all respond to biodiversity. We therefore compared the strength of plant diversity effects between different categories of ecosystem processes, grouping processes according to the year of measurement, their biogeochemical cycle, trophic level and compartment (above- or belowground) and according to whether they were measures of biodiversity or other ecosystem processes, biotic or abiotic and static or dynamic. Overall, and for several individual processes, we found that biodiversity effects became stronger over time. Measures of the carbon cycle were also affected more strongly by plant species richness than were the measures associated with the nitrogen cycle. Further, we found greater plant species richness effects on measures of biodiversity than on other processes. The differential effects of plant diversity on the various types of ecosystem processes indicate that future research and political effort should shift from a general debate about whether biodiversity loss impairs ecosystem functions to focussing on the specific functions of interest and ways to preserve them individually or in combination.}, language = {en} }