@article{PingelZenNeheretal.2009, author = {Pingel, Patrick and Zen, Achmad and Neher, Dieter and Lieberwirth, Ingo and Wegner, Gerhard and Allard, Sybille and Scherf, Ullrich}, title = {Unexpectedly high field-effect mobility of a soluble, low molecular weight oligoquaterthiophene fraction with low polydispersity}, issn = {0947-8396}, doi = {10.1007/s00339-008-4994-0}, year = {2009}, abstract = {Layers made from soluble low molecular weight polythiophene PQT-12 with low polydispersity exhibit a highly ordered structure and charge-carrier mobilities of the order of 10(-3) cm(2)/(V s), which we attribute to its proximity to monodispersity. We propose that polydispersity is a decisive factor with regard to structure formation and transport properties of soluble low molecular weight polythiophenes.}, language = {en} } @article{SchubertFrischAllardetal.2017, author = {Schubert, Marcel and Frisch, Johannes and Allard, Sybille and Preis, Eduard and Scherf, Ullrich and Koch, Norbert and Neher, Dieter}, title = {Tuning side chain and main chain order in a prototypical donor-acceptor copolymer}, series = {Elementary Processes in Organic Photovoltaics}, volume = {272}, journal = {Elementary Processes in Organic Photovoltaics}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-319-28338-8}, issn = {0065-3195}, doi = {10.1007/978-3-319-28338-8_10}, pages = {243 -- 265}, year = {2017}, abstract = {The recent development of donor-acceptor copolymers has led to an enormous improvement in the performance of organic solar cells and organic field-effect transistors. Here we describe the synthesis, detailed characterisation, and application of a series of structurally modified copolymers to investigate fundamental structure-property relationships in this class of conjugated polymers. The interplay between chemical structure and optoelectronic properties is investigated. These are further correlated to the charge transport and solar cell performance, which allows us to link their chemical structure to the observed physical properties.}, language = {en} } @article{SainovaFujikawaScherfetal.1999, author = {Sainova, Dessislava and Fujikawa, H. and Scherf, Ullrich and Neher, Dieter}, title = {The effect of hole traps on the performance of single layer polymer light emitting diodes}, year = {1999}, language = {en} } @article{InalKoelschChiappisietal.2013, author = {Inal, Sahika and Koelsch, Jonas D. and Chiappisi, Leonardo and Kraft, Mario and Gutacker, Andrea and Janietz, Dietmar and Scherf, Ullrich and Gradzielski, Michael and Laschewsky, Andr{\´e} and Neher, Dieter}, title = {Temperature-Regulated Fluorescence Characteristics of Supramolecular Assemblies Formed By a Smart Polymer and a Conjugated Polyelectrolyte}, series = {MACROMOLECULAR CHEMISTRY AND PHYSICS}, volume = {214}, journal = {MACROMOLECULAR CHEMISTRY AND PHYSICS}, number = {4}, publisher = {WILEY-V C H VERLAG GMBH}, address = {WEINHEIM}, issn = {1022-1352}, doi = {10.1002/macp.201200493}, pages = {435 -- 445}, year = {2013}, abstract = {Aqueous mixtures of a coumarin-labeled non-ionic thermoresponsive copolymer and a cationic polythiophene exhibit marked changes in their fluorescence properties upon heating. At room temperature, emission from the label is significantly quenched due to energy transfer to the conjugated polyelectrolyte. Heating the mixture reduces the energy-transfer efficiency markedly, resulting in a clearly visible change of the emission color. Although the two macromolecules associate strongly at room temperature, the number of interacting sites is largely reduced upon the phase transition. Crucially, the intermolecular association does not suppress the responsiveness of the smart polymer, meaning that this concept should be applicable to chemo- or bioresponsive polymers with optical read-out, for example, as a sensor device.}, language = {en} } @article{InalChiappisiKoelschetal.2013, author = {Inal, Sahika and Chiappisi, Leonardo and K{\"o}lsch, Jonas D. and Kraft, Mario and Appavou, Marie-Sousai and Scherf, Ullrich and Wagner, Manfred and Hansen, Michael Ryan and Gradzielski, Michael and Laschewsky, Andr{\´e} and Neher, Dieter}, title = {Temperature-regulated fluorescence and association of an Oligo(ethyleneglycol)methacrylate-based copolymer with a conjugated Polyelectrolyte-the effect of solution ionic strength}, series = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, volume = {117}, journal = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, number = {46}, publisher = {American Chemical Society}, address = {Washington}, issn = {1520-6106}, doi = {10.1021/jp408864s}, pages = {14576 -- 14587}, year = {2013}, abstract = {Aqueous mixtures of a dye-labeled non-ionic thermoresponsive copolymer and a conjugated cationic polyelectrolyte are shown to exhibit characteristic changes in fluorescence properties in response to temperature and to the presence of salts, enabling a double-stimuli responsiveness. In such mixtures at room temperature, i.e., well below the lower critical solution temperature (LCST), the emission of the dye is strongly quenched due to energy transfer to the polycation, pointing to supramolecular interactions between the two macromolecules. Increasing the concentration of salts weakens the interpolymer interactions, the extent of which is simultaneously monitored from the change in the relative emission intensity of the components. When the mixture is heated above its LCST, the transfer efficiency is significantly reduced, signaling a structural reorganization process, however, surprisingly only if the mixture contains salt ions. To elucidate the reasons behind such thermo- and ion-sensitive fluorescence characteristics, we investigate the effect of salts of alkali chlorides, in particular of NaCl, on the association behavior of these macromolecules before and after the polymer phase transition by a combination of UV-vis, fluorescence, and H-1 NMR spectroscopy with light scattering and small-angle neutron scattering measurements.}, language = {en} } @article{YangJaiserNeheretal.2004, author = {Yang, Xiao Hui and Jaiser, Frank and Neher, Dieter and Lawson, PaDreyia V. and Br{\´e}das, Jean-Luc and Zojer, Egbert and G{\"u}ntner, Roland and Scanduicci de Freitas, Patricia and Forster, Michael and Scherf, Ullrich}, title = {Suppression of the keto-emission in polyfluorene light-emitting diodes : Experiments and models}, issn = {1616-301X}, year = {2004}, abstract = {The spectral characteristics of polyfluorene (PF)-based light-emitting diodes (LEDs) containing a defined low concentration of either keto-defects or of the polymer poly(9.9-octylfuorene-co-benzothiadiazole) (F8BT) are preseneted. Both types of blend layers were tested in different device configurations with respect to the relative and absolute intensities of green blue emission components. It is shown that blending hole-transporting molecules into the emission layer at low concentration or incorporation of a suitable hole-transport layer reduces the green emission contribution in the electroluminescence (EL) spectrum of the PF:F8BT blend, which is similar to what is observed for the keto- containing PF layer. We conclude that the keto-defects in PF homopolymer layers mainly constitute weakly emissive electron traps, in agreement with the results of quantum-mechanical calculations}, language = {en} } @article{ZenBilgeGalbrechtetal.2006, author = {Zen, Achmad and Bilge, Askin and Galbrecht, Frank and Alle, Ronald and Meerholz, Klaus and Grenzer, J{\"o}rg and Neher, Dieter and Scherf, Ullrich and Farrell, Tony}, title = {Solution processable organic field-effect transistors utilizing an alpha,alpha '-dihexylpentathiophene- based swivel cruciform}, doi = {10.1021/Ja0573357}, year = {2006}, language = {en} } @article{LandfesterMontenegroScherfetal.2002, author = {Landfester, Katharina and Montenegro, Rivelino V. D. and Scherf, Ullrich and G{\"u}nter, R. and Asawapirom, Udom and Patil, S. and Neher, Dieter and Kietzke, Thomas}, title = {Semiconducting polymer nanospheres in aqeous dispersion prepared by a miniemulsion process}, year = {2002}, language = {en} } @article{GalbrechtYangNehlsetal.2005, author = {Galbrecht, Frank and Yang, X. H. and Nehls, B. S. and Neher, Dieter and Farrell, Tony and Scherf, Ullrich}, title = {Semiconducting polyfluorenes with electrophosphorescent on-chain platinum-salen chromophores}, issn = {1359-7345}, year = {2005}, abstract = {The synthesis of statistical fluorene-type copolymers with on-chain Pt-salen phosphorescent units and their use in electrophosphorescent OLEDs is reported}, language = {en} } @article{RomanovskiiBasslerScherf2004, author = {Romanovskii, Y. V. and Bassler, H. and Scherf, Ullrich}, title = {Relaxation processes in electronic states of conjugated polymers studied via spectral hole-burning at low temperature}, issn = {0009-2614}, year = {2004}, abstract = {Persistent and transient hole-burning (HB) at 4.2 K have been applied to study the intrinsic properties of electronic excitations of a ladder type pi-conjugated poly(para-phenylene) in solutions. A narrow spectral hole less than I meV wide has been detected. The dependencies of the HB efficiency on the burn dose and wavelength, on doping the samples by electron scavenger are interpreted in terms of a photo reaction related to the two-level systems - specific low energy excitations in amorphous materials. In transient HB an additional hole broadening was observed which stems from the triplet energy transfer under conditions of lack of correlation of site energies of the singlet and triplet states of chromophores. (C) 2003 Elsevier B.V. All rights reserved}, language = {en} }