@misc{PrieskeMuehlbauerGranacher2016, author = {Prieske, Olaf and M{\"u}hlbauer, Thomas and Granacher, Urs}, title = {The Role of Trunk Muscle Strength for Physical Fitness and Athletic Performance in Trained Individuals: A Systematic Review and Meta-Analysis}, series = {Sports medicine}, volume = {46}, journal = {Sports medicine}, publisher = {Springer}, address = {Northcote}, issn = {0112-1642}, doi = {10.1007/s40279-015-0426-4}, pages = {401 -- 419}, year = {2016}, abstract = {Background The importance of trunk muscle strength (TMS) for physical fitness and athletic performance has been demonstrated by studies reporting significant correlations between those capacities. However, evidence-based knowledge regarding the magnitude of correlations between TMS and proxies of physical fitness and athletic performance as well as potential effects of core strength training (CST) on TMS, physical fitness and athletic performance variables is currently lacking for trained individuals. Objective The aims of this systematic review and meta-analysis were to quantify associations between variables of TMS, physical fitness and athletic performance and effects of CST on these measures in healthy trained individuals. Data Sources PubMed, Web of Science, and SPORTDiscus were systematically screened from January 1984 to March 2015. Study Eligibility Criteria Studies were included that investigated healthy trained individuals aged 16-44 years and tested at least one measure of TMS, muscle strength, muscle power, balance, and/or athletic performance. Results Small-sized relationships of TMS with physical performance measures (-0.05 <= r <= 0.18) were found in 15 correlation studies. Sixteen intervention studies revealed large effects of CST on measures of TMS (SMD = 1.07) but small-to-medium-sized effects on proxies of physical performance (0 <= SMD <= 0.71) compared with no training or regular training only. The methodological quality of CST studies was low (median PEDro score = 4). Conclusions Our findings indicate that TMS plays only a minor role for physical fitness and athletic performance in trained individuals. In fact, CST appears to be an effective means to increase TMS and was associated with only limited gains in physical fitness and athletic performance measures when compared with no or only regular training.}, language = {en} } @misc{GranacherLesinskiBueschetal.2016, author = {Granacher, Urs and Lesinski, Melanie and Buesch, Dirk and M{\"u}hlbauer, Thomas and Prieske, Olaf and Puta, Christian and Gollhofer, Albert and Behm, David George}, title = {Effects of Resistance Training in Youth Athletes on Muscular Fitness and Athletic Performance: A Conceptual Model for Long-Term Athlete Development}, series = {Frontiers in physiology}, volume = {7}, journal = {Frontiers in physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2016.00164}, pages = {14}, year = {2016}, abstract = {During the stages of long-term athlete development (LTAD), resistance training (RT) is an important means for (i) stimulating athletic development, (ii) tolerating the demands of long-term training and competition, and (iii) inducing long-term health promoting effects that are robust over time and track into adulthood. However, there is a gap in the literature with regards to optimal RT methods during LTAD and how RT is linked to biological age. Thus, the aims of this scoping review were (i) to describe and discuss the effects of RT on muscular fitness and athletic performance in youth athletes, (ii) to introduce a conceptual model on how to appropriately implement different types of RT within LTAD stages, and (iii) to identify research gaps from the existing literature by deducing implications for future research. In general, RT produced small -to -moderate effects on muscular fitness and athletic performance in youth athletes with muscular strength showing the largest improvement. Free weight, complex, and plyometric training appear to be well -suited to improve muscular fitness and athletic performance. In addition, balance training appears to be an important preparatory (facilitating) training program during all stages of LTAD but particularly during the early stages. As youth athletes become more mature, specificity, and intensity of RT methods increase. This scoping review identified research gaps that are summarized in the following and that should be addressed in future studies: (i) to elucidate the influence of gender and biological age on the adaptive potential following RT in youth athletes (especially in females), (ii) to describe RT protocols in more detail (i.e., always report stress and strain based parameters), and (iii) to examine neuromuscular and tendomuscular adaptations following RT in youth athletes.}, language = {en} } @misc{LesinskiPrieskeGranacher2016, author = {Lesinski, Melanie and Prieske, Olaf and Granacher, Urs}, title = {Effects and dose-response relationships of resistance training on physical performance in youth athletes: a systematic review and meta-analysis}, series = {British journal of sports medicine : the journal of sport and exercise medicine}, volume = {50}, journal = {British journal of sports medicine : the journal of sport and exercise medicine}, publisher = {BMJ Publishing Group}, address = {London}, issn = {0306-3674}, doi = {10.1136/bjsports-2015-095497}, pages = {781 -- 795}, year = {2016}, abstract = {Objectives To quantify age, sex, sport and training type-specific effects of resistance training on physical performance, and to characterise dose-response relationships of resistance training parameters that could maximise gains in physical performance in youth athletes. Design Systematic review and meta-analysis of intervention studies. Data sources Studies were identified by systematic literature search in the databases PubMed and Web of Science (1985-2015). Weighted mean standardised mean differences (SMDwm) were calculated using random-effects models. Eligibility criteria for selecting studies Only studies with an active control group were included if these investigated the effects of resistance training in youth athletes (6-18 years) and tested at least one physical performance measure. Results 43 studies met the inclusion criteria. Our analyses revealed moderate effects of resistance training on muscle strength and vertical jump performance (SMDwm 0.8-1.09), and small effects on linear sprint, agility and sport-specific performance (SMDwm 0.58-0.75). Effects were moderated by sex and resistance training type. Independently computed dose-response relationships for resistance training parameters revealed that a training period of >23 weeks, 5 sets/exercise, 6-8 repetitions/set, a training intensity of 80-89\% of 1 repetition maximum (RM), and 3-4 min rest between sets were most effective to improve muscle strength (SMDwm 2.09-3.40). Summary/conclusions Resistance training is an effective method to enhance muscle strength and jump performance in youth athletes, moderated by sex and resistance training type. Dose-response relationships for key training parameters indicate that youth coaches should primarily implement resistance training programmes with fewer repetitions and higher intensities to improve physical performance measures of youth athletes.}, language = {en} }