@article{HeinzelLorenzBrockhausetal.2014, author = {Heinzel, Stephan and Lorenz, Robert C. and Brockhaus, Wolf-Ruediger and Wuestenberg, Torsten and Kathmann, Norbert and Heinz, Andreas and Rapp, Michael A.}, title = {Working memory load-dependent brain response predicts behavioral training gains in older adults}, series = {The journal of neuroscience}, volume = {34}, journal = {The journal of neuroscience}, number = {4}, publisher = {Society for Neuroscience}, address = {Washington}, issn = {0270-6474}, doi = {10.1523/JNEUROSCI.2463-13.2014}, pages = {1224 -- 1233}, year = {2014}, abstract = {In the domain of working memory (WM), a sigmoid-shaped relationship between WM load and brain activation patterns has been demonstrated in younger adults. It has been suggested that age-related alterations of this pattern are associated with changes in neural efficiency and capacity. At the same time, WM training studies have shown that some older adults are able to increase their WM performance through training. In this study, functional magnetic resonance imaging during an n-back WM task at different WM load levels was applied to compare blood oxygen level-dependent (BOLD) responses between younger and older participants and to predict gains in WM performance after a subsequent 12-session WM training procedure in older adults. We show that increased neural efficiency and capacity, as reflected by more "youth-like" brain response patterns in regions of interest of the frontoparietal WM network, were associated with better behavioral training outcome beyond the effects of age, sex, education, gray matter volume, and baseline WM performance. Furthermore, at low difficulty levels, decreases in BOLD response were found after WM training. Results indicate that both neural efficiency (i. e., decreased activation at comparable performance levels) and capacity (i. e., increasing activation with increasing WM load) of a WM-related network predict plasticity of the WM system, whereas WM training may specifically increase neural efficiency in older adults.}, language = {en} } @article{PliatsikasVerissimoBabcocketal.2019, author = {Pliatsikas, Christos and Verissimo, Joao Marques and Babcock, Laura and Pullman, Mariel Y. and Glei, Dana A. and Weinstein, Maxine and Goldman, Noreen and Ullman, Michael T.}, title = {Working memory in older adults declines with age, but is modulated by sex and education}, series = {The quarterly journal of experimental psychology}, volume = {72}, journal = {The quarterly journal of experimental psychology}, number = {6}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {1747-0218}, doi = {10.1177/1747021818791994}, pages = {1308 -- 1327}, year = {2019}, abstract = {Working memory (WM), which underlies the temporary storage and manipulation of information, is critical for multiple aspects of cognition and everyday life. Nevertheless, research examining WM specifically in older adults remains limited, despite the global rapid increase in human life expectancy. We examined WM in a large sample (N=754) of healthy older adults (aged 58-89) in a non-Western population (Chinese speakers) in Taiwan, on a digit n-back task. We tested not only the influence of age itself and of load (1-back vs. 2-back) but also the effects of both sex and education, which have been shown to modulate WM abilities. Mixed-effects regression revealed that, within older adulthood, age negatively impacted WM abilities (with linear, not nonlinear, effects), as did load (worse performance at 2-back). In contrast, education level was positively associated with WM. Moreover, both age and education interacted with sex. With increasing age, males showed a steeper WM decline than females; with increasing education, females showed greater WM gains than males. Together with other findings, the evidence suggests that age, sex, and education all impact WM in older adults, but interact in particular ways. The results have both basic research and translational implications and are consistent with particular benefits from increased education for women.}, language = {en} } @article{SoemerSchiefele2020, author = {Soemer, Alexander and Schiefele, Ulrich}, title = {Working memory capacity and (in)voluntary mind wandering}, series = {Psychonomic bulletin \& review : a journal of the Psychonomic Society}, volume = {27}, journal = {Psychonomic bulletin \& review : a journal of the Psychonomic Society}, number = {4}, publisher = {Springer}, address = {New York}, issn = {1069-9384}, doi = {10.3758/s13423-020-01737-4}, pages = {758 -- 767}, year = {2020}, abstract = {According to influential accounts of mind wandering (MW), working memory capacity (WMC) plays a key role in controlling the amount of off-task thought during the execution of a demanding task. Whereas WMC has primarily been associated with reduced levels of involuntarily occurring MW episodes in prior research, here we demonstrate for the first time that high-WMC individuals exhibit lower levels of voluntary MW. One hundred and eighty participants carried out a demanding reading task and reported their attentional state in response to random thought probes. In addition, participants' WMC was measured with two common complex span tasks (operation span and symmetry span). As a result, WMC was negatively related to both voluntary and involuntary MW, and the two forms of MW partially mediated the positive effect of WMC on reading performance. Furthermore, the negative relation between voluntary WM and reading remained significant after controlling for interest. Thus, in contrast to prior research suggesting that voluntary MW might be more closely related to motivation rather than WMC, the present results demonstrate that high-WMC individuals tend to limit both involuntary and voluntary MW more strictly than low-WMC individuals.}, language = {en} } @phdthesis{Jaeger2015, author = {J{\"a}ger, Lena Ann}, title = {Working memory and prediction in human sentence parsing}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-82517}, school = {Universit{\"a}t Potsdam}, pages = {xi, 144}, year = {2015}, abstract = {This dissertation investigates the working memory mechanism subserving human sentence processing and its relative contribution to processing difficulty as compared to syntactic prediction. Within the last decades, evidence for a content-addressable memory system underlying human cognition in general has accumulated (e.g., Anderson et al., 2004). In sentence processing research, it has been proposed that this general content-addressable architecture is also used for language processing (e.g., McElree, 2000). Although there is a growing body of evidence from various kinds of linguistic dependencies that is consistent with a general content-addressable memory subserving sentence processing (e.g., McElree et al., 2003; VanDyke2006), the case of reflexive-antecedent dependencies has challenged this view. It has been proposed that in the processing of reflexive-antecedent dependencies, a syntactic-structure based memory access is used rather than cue-based retrieval within a content-addressable framework (e.g., Sturt, 2003). Two eye-tracking experiments on Chinese reflexives were designed to tease apart accounts assuming a syntactic-structure based memory access mechanism from cue-based retrieval (implemented in ACT-R as proposed by Lewis and Vasishth (2005). In both experiments, interference effects were observed from noun phrases which syntactically do not qualify as the reflexive's antecedent but match the animacy requirement the reflexive imposes on its antecedent. These results are interpreted as evidence against a purely syntactic-structure based memory access. However, the exact pattern of effects observed in the data is only partially compatible with the Lewis and Vasishth cue-based parsing model. Therefore, an extension of the Lewis and Vasishth model is proposed. Two principles are added to the original model, namely 'cue confusion' and 'distractor prominence'. Although interference effects are generally interpreted in favor of a content-addressable memory architecture, an alternative explanation for interference effects in reflexive processing has been proposed which, crucially, might reconcile interference effects with a structure-based account. It has been argued that interference effects do not necessarily reflect cue-based retrieval interference in a content-addressable memory but might equally well be accounted for by interference effects which have already occurred at the moment of encoding the antecedent in memory (Dillon, 2011). Three experiments (eye-tracking and self-paced reading) on German reflexives and Swedish possessives were designed to tease apart cue-based retrieval interference from encoding interference. The results of all three experiments suggest that there is no evidence that encoding interference affects the retrieval of a reflexive's antecedent. Taken together, these findings suggest that the processing of reflexives can be explained with the same cue-based retrieval mechanism that has been invoked to explain syntactic dependency resolution in a range of other structures. This supports the view that the language processing system is located within a general cognitive architecture, with a general-purpose content-addressable working memory system operating on linguistic expressions. Finally, two experiments (self-paced reading and eye-tracking) using Chinese relative clauses were conducted to determine the relative contribution to sentence processing difficulty of working-memory processes as compared to syntactic prediction during incremental parsing. Chinese has the cross-linguistically rare property of being a language with subject-verb-object word order and pre-nominal relative clauses. This property leads to opposing predictions of expectation-based accounts and memory-based accounts with respect to the relative processing difficulty of subject vs. object relatives. Previous studies showed contradictory results, which has been attributed to different kinds local ambiguities confounding the materials (Lin and Bever, 2011). The two experiments presented are the first to compare Chinese relatives clauses in syntactically unambiguous contexts. The results of both experiments were consistent with the predictions of the expectation-based account of sentence processing but not with the memory-based account. From these findings, I conclude that any theory of human sentence processing needs to take into account the power of predictive processes unfolding in the human mind.}, language = {en} } @phdthesis{Vockenberg2006, author = {Vockenberg, Kerstin}, title = {Updating of representations in working memory}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-11767}, school = {Universit{\"a}t Potsdam}, year = {2006}, abstract = {The limited capacity of working memory forces people to update its contents continuously. Two aspects of the updating process were investigated in the present experimental series. The first series concerned the question if it is possible to update several representations in parallel. Similar results were obtained for the updating of object features as well as for the updating of whole objects, participants were able to update representations in parallel. The second experimental series addressed the question if working memory representations which were replaced in an updating disappear directly or interfere with the new representations. Evidence for the existence of old representations was found under working memory conditions and under conditions exceeding working memory capacity. These results contradict the hypothesis that working memory contents are protected from proactive interference of long-term memory contents.}, subject = {Aktualisierung}, language = {en} } @misc{HeinzelRimpelStelzeletal.2017, author = {Heinzel, Stephan and Rimpel, J{\´e}r{\^o}me and Stelzel, Christine and Rapp, Michael A.}, title = {Transfer Effects to a Multimodal Dual-Task after Working Memory Training and Associated Neural Correlates in Older Adults}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-401921}, pages = {15}, year = {2017}, abstract = {Working memory (WM) performance declines with age. However, several studies have shown that WM training may lead to performance increases not only in the trained task, but also in untrained cognitive transfer tasks. It has been suggested that transfer effects occur if training task and transfer task share specific processing components that are supposedly processed in the same brain areas. In the current study, we investigated whether single-task WM training and training-related alterations in neural activity might support performance in a dual-task setting, thus assessing transfer effects to higher-order control processes in the context of dual-task coordination. A sample of older adults (age 60-72) was assigned to either a training or control group. The training group participated in 12 sessions of an adaptive n-back training. At pre and post-measurement, a multimodal dual-task was performed in all participants to assess transfer effects. This task consisted of two simultaneous delayed match to sample WM tasks using two different stimulus modalities (visual and auditory) that were performed either in isolation (single-task) or in conjunction (dual-task). A subgroup also participated in functional magnetic resonance imaging (fMRI) during the performance of the n-back task before and after training. While no transfer to single-task performance was found, dual-task costs in both the visual modality (p < 0.05) and the auditory modality (p < 0.05) decreased at post-measurement in the training but not in the control group. In the fMRI subgroup of the training participants, neural activity changes in left dorsolateral prefrontal cortex (DLPFC) during one-back predicted post-training auditory dual-task costs, while neural activity changes in right DLPFC during three-back predicted visual dual-task costs. Results might indicate an improvement in central executive processing that could facilitate both WM and dual-task coordination.}, language = {en} } @article{HeinzelRimpelStelzeletal.2017, author = {Heinzel, Stephan and Rimpel, J{\´e}r{\^o}me and Stelzel, Christine and Rapp, Michael A.}, title = {Transfer Effects to a Multimodal Dual-Task after Working Memory Training and Associated Neural Correlates in Older Adults}, series = {Frontiers in human neuroscience}, volume = {11}, journal = {Frontiers in human neuroscience}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, doi = {10.3389/fnhum.2017.00085}, year = {2017}, abstract = {Working memory (WM) performance declines with age. However, several studies have shown that WM training may lead to performance increases not only in the trained task, but also in untrained cognitive transfer tasks. It has been suggested that transfer effects occur if training task and transfer task share specific processing components that are supposedly processed in the same brain areas. In the current study, we investigated whether single-task WM training and training-related alterations in neural activity might support performance in a dual-task setting, thus assessing transfer effects to higher-order control processes in the context of dual-task coordination. A sample of older adults (age 60-72) was assigned to either a training or control group. The training group participated in 12 sessions of an adaptive n-back training. At pre and post-measurement, a multimodal dual-task was performed in all participants to assess transfer effects. This task consisted of two simultaneous delayed match to sample WM tasks using two different stimulus modalities (visual and auditory) that were performed either in isolation (single-task) or in conjunction (dual-task). A subgroup also participated in functional magnetic resonance imaging (fMRI) during the performance of the n-back task before and after training. While no transfer to single-task performance was found, dual-task costs in both the visual modality (p < 0.05) and the auditory modality (p < 0.05) decreased at post-measurement in the training but not in the control group. In the fMRI subgroup of the training participants, neural activity changes in left dorsolateral prefrontal cortex (DLPFC) during one-back predicted post-training auditory dual-task costs, while neural activity changes in right DLPFC during three-back predicted visual dual-task costs. Results might indicate an improvement in central executive processing that could facilitate both WM and dual-task coordination.}, language = {en} } @phdthesis{Zakarias2018, author = {Zakari{\´a}s, Lilla}, title = {Transfer effects after working memory training in post-stroke aphasia}, doi = {10.25932/publishup-42360}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-423600}, school = {Universit{\"a}t Potsdam}, pages = {178}, year = {2018}, abstract = {Background: Individuals with aphasia after stroke (IWA) often present with working memory (WM) deficits. Research investigating the relationship between WM and language abilities has led to the promising hypothesis that treatments of WM could lead to improvements in language, a phenomenon known as transfer. Although recent treatment protocols have been successful in improving WM, the evidence to date is scarce and the extent to which improvements in trained tasks of WM transfer to untrained memory tasks, spoken sentence comprehension, and functional communication is yet poorly understood. Aims: We aimed at (a) investigating whether WM can be improved through an adaptive n-back training in IWA (Study 1-3); (b) testing whether WM training leads to near transfer to unpracticed WM tasks (Study 1-3), and far transfer to spoken sentence comprehension (Study 1-3), functional communication (Study 2-3), and memory in daily life in IWA (Study 2-3); and (c) evaluating the methodological quality of existing WM treatments in IWA (Study 3). To address these goals, we conducted two empirical studies - a case-controls study with Hungarian speaking IWA (Study 1) and a multiple baseline study with German speaking IWA (Study 2) - and a systematic review (Study 3). Methods: In Study 1 and 2 participants with chronic, post-stroke aphasia performed an adaptive, computerized n-back training. 'Adaptivity' was implemented by adjusting the tasks' difficulty level according to the participants' performance, ensuring that they always practiced at an optimal level of difficulty. To assess the specificity of transfer effects and to better understand the underlying mechanisms of transfer on spoken sentence comprehension, we included an outcome measure testing specific syntactic structures that have been proposed to involve WM processes (e.g., non-canonical structures with varying complexity). Results: We detected a mixed pattern of training and transfer effects across individuals: five participants out of six significantly improved in the n-back training. Our most important finding is that all six participants improved significantly in spoken sentence comprehension (i.e., far transfer effects). In addition, we also found far transfer to functional communication (in two participants out of three in Study 2) and everyday memory functioning (in all three participants in Study 2), and near transfer to unpracticed n-back tasks (in four participants out of six). Pooled data analysis of Study 1 and 2 showed a significant negative relationship between initial spoken sentence comprehension and the amount of improvement in this ability, suggesting that the more severe the participants' spoken sentence comprehension deficit was at the beginning of training, the more they improved after training. Taken together, we detected both near far and transfer effects in our studies, but the effects varied across participants. The systematic review evaluating the methodological quality of existing WM treatments in stroke IWA (Study 3) showed poor internal and external validity across the included 17 studies. Poor internal validity was mainly due to use of inappropriate design, lack of randomization of study phases, lack of blinding of participants and/or assessors, and insufficient sampling. Low external validity was mainly related to incomplete information on the setting, lack of use of appropriate analysis or justification for the suitability of the analysis procedure used, and lack of replication across participants and/or behaviors. Results in terms of WM, spoken sentence comprehension, and reading are promising, but further studies with more rigorous methodology and stronger experimental control are needed to determine the beneficial effects of WM intervention. Conclusions: Results of the empirical studies suggest that WM can be improved with a computerized and adaptive WM training, and improvements can lead to transfer effects to spoken sentence comprehension and functional communication in some individuals with chronic post-stroke aphasia. The fact that improvements were not specific to certain syntactic structures (i.e., non-canonical complex sentences) in spoken sentence comprehension suggest that WM is not involved in the online, automatic processing of syntactic information (i.e., parsing and interpretation), but plays a more general role in the later stage of spoken sentence comprehension (i.e., post-interpretive comprehension). The individual differences in treatment outcomes call for future research to clarify how far these results are generalizable to the population level of IWA. Future studies are needed to identify a few mechanisms that may generalize to at least a subpopulation of IWA as well as to investigate baseline non-linguistic cognitive and language abilities that may play a role in transfer effects and the maintenance of such effects. These may require larger yet homogenous samples.}, language = {en} } @phdthesis{Engelmann2016, author = {Engelmann, Felix}, title = {Toward an integrated model of sentence processing in reading}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-100864}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 143}, year = {2016}, abstract = {In experiments investigating sentence processing, eye movement measures such as fixation durations and regression proportions while reading are commonly used to draw conclusions about processing difficulties. However, these measures are the result of an interaction of multiple cognitive levels and processing strategies and thus are only indirect indicators of processing difficulty. In order to properly interpret an eye movement response, one has to understand the underlying principles of adaptive processing such as trade-off mechanisms between reading speed and depth of comprehension that interact with task demands and individual differences. Therefore, it is necessary to establish explicit models of the respective mechanisms as well as their causal relationship with observable behavior. There are models of lexical processing and eye movement control on the one side and models on sentence parsing and memory processes on the other. However, no model so far combines both sides with explicitly defined linking assumptions. In this thesis, a model is developed that integrates oculomotor control with a parsing mechanism and a theory of cue-based memory retrieval. On the basis of previous empirical findings and independently motivated principles, adaptive, resource-preserving mechanisms of underspecification are proposed both on the level of memory access and on the level of syntactic parsing. The thesis first investigates the model of cue-based retrieval in sentence comprehension of Lewis \& Vasishth (2005) with a comprehensive literature review and computational modeling of retrieval interference in dependency processing. The results reveal a great variability in the data that is not explained by the theory. Therefore, two principles, 'distractor prominence' and 'cue confusion', are proposed as an extension to the theory, thus providing a more adequate description of systematic variance in empirical results as a consequence of experimental design, linguistic environment, and individual differences. In the remainder of the thesis, four interfaces between parsing and eye movement control are defined: Time Out, Reanalysis, Underspecification, and Subvocalization. By comparing computationally derived predictions with experimental results from the literature, it is investigated to what extent these four interfaces constitute an appropriate elementary set of assumptions for explaining specific eye movement patterns during sentence processing. Through simulations, it is shown how this system of in itself simple assumptions results in predictions of complex, adaptive behavior. In conclusion, it is argued that, on all levels, the sentence comprehension mechanism seeks a balance between necessary processing effort and reading speed on the basis of experience, task demands, and resource limitations. Theories of linguistic processing therefore need to be explicitly defined and implemented, in particular with respect to linking assumptions between observable behavior and underlying cognitive processes. The comprehensive model developed here integrates multiple levels of sentence processing that hitherto have only been studied in isolation. The model is made publicly available as an expandable framework for future studies of the interactions between parsing, memory access, and eye movement control.}, language = {en} } @article{EhlertPoltzQuandteetal.2022, author = {Ehlert, Antje and Poltz, Nadine and Quandte, Sabine and Kohn-Henkel, Juliane and Kucian, Karin and Aster, Michael von and Esser, G{\"u}nter}, title = {Taking a closer look: The relationship between pre-school domain general cognition and school mathematics achievement when controlling for intelligence}, series = {Journal of Intelligence}, volume = {10}, journal = {Journal of Intelligence}, edition = {3}, publisher = {MDPI}, address = {Basel, Schweiz}, issn = {2079-3200}, doi = {10.3390/jintelligence10030070}, pages = {1 -- 23}, year = {2022}, abstract = {Intelligence, as well as working memory and attention, affect the acquisition of mathematical competencies. This paper aimed to examine the influence of working memory and attention when taking different mathematical skills into account as a function of children's intellectual ability. Overall, intelligence, working memory, attention and numerical skills were assessed twice in 1868 German pre-school children (t1, t2) and again at 2nd grade (t3). We defined three intellectual ability groups based on the results of intellectual assessment at t1 and t2. Group comparisons revealed significant differences between the three intellectual ability groups. Over time, children with low intellectual ability showed the lowest achievement in domain-general and numerical and mathematical skills compared to children of average intellectual ability. The highest achievement on the aforementioned variables was found for children of high intellectual ability. Additionally, path modelling revealed that, depending on the intellectual ability, different models of varying complexity could be generated. These models differed with regard to the relevance of the predictors (t2) and the future mathematical skills (t3). Causes and conclusions of these findings are discussed.}, language = {en} }