@phdthesis{Gong2019, author = {Gong, Chen Chris}, title = {Synchronization of coupled phase oscillators}, doi = {10.25932/publishup-48752}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-487522}, school = {Universit{\"a}t Potsdam}, pages = {xvii, 115}, year = {2019}, abstract = {Oscillatory systems under weak coupling can be described by the Kuramoto model of phase oscillators. Kuramoto phase oscillators have diverse applications ranging from phenomena such as communication between neurons and collective influences of political opinions, to engineered systems such as Josephson Junctions and synchronized electric power grids. This thesis includes the author's contribution to the theoretical framework of coupled Kuramoto oscillators and to the understanding of non-trivial N-body dynamical systems via their reduced mean-field dynamics. The main content of this thesis is composed of four parts. First, a partially integrable theory of globally coupled identical Kuramoto oscillators is extended to include pure higher-mode coupling. The extended theory is then applied to a non-trivial higher-mode coupled model, which has been found to exhibit asymmetric clustering. Using the developed theory, we could predict a number of features of the asymmetric clustering with only information of the initial state provided. The second part consists of an iterated discrete-map approach to simulate phase dynamics. The proposed map --- a Moebius map --- not only provides fast computation of phase synchronization, it also precisely reflects the underlying group structure of the dynamics. We then compare the iterated-map dynamics and various analogous continuous-time dynamics. We are able to replicate known phenomena such as the synchronization transition of the Kuramoto-Sakaguchi model of oscillators with distributed natural frequencies, and chimera states for identical oscillators under non-local coupling. The third part entails a particular model of repulsively coupled identical Kuramoto-Sakaguchi oscillators under common random forcing, which can be shown to be partially integrable. Via both numerical simulations and theoretical analysis, we determine that such a model cannot exhibit stationary multi-cluster states, contrary to the numerical findings in previous literature. Through further investigation, we find that the multi-clustering states reported previously occur due to the accumulation of discretization errors inherent in the integration algorithms, which introduce higher-mode couplings into the model. As a result, the partial integrability condition is violated. Lastly, we derive the microscopic cross-correlation of globally coupled non-identical Kuramoto oscillators under common fluctuating forcing. The effect of correlation arises naturally in finite populations, due to the non-trivial fluctuations of the meanfield. In an idealized model, we approximate the finite-sized fluctuation by a Gaussian white noise. The analytical approximation qualitatively matches the measurements in numerical experiments, however, due to other periodic components inherent in the fluctuations of the mean-field there still exist significant inconsistencies.}, language = {en} } @phdthesis{Kucklaender2006, author = {Kuckl{\"a}nder, Nina}, title = {Synchronization via correlated noise and automatic control in ecological systems}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-10826}, school = {Universit{\"a}t Potsdam}, year = {2006}, abstract = { Subject of this work is the possibility to synchronize nonlinear systems via correlated noise and automatic control. The thesis is divided into two parts. The first part is motivated by field studies on feral sheep populations on two islands of the St. Kilda archipelago, which revealed strong correlations due to environmental noise. For a linear system the population correlation equals the noise correlation (Moran effect). But there exists no systematic examination of the properties of nonlinear maps under the influence of correlated noise. Therefore, in the first part of this thesis the noise-induced correlation of logistic maps is systematically examined. For small noise intensities it can be shown analytically that the correlation of quadratic maps in the fixed-point regime is always smaller than or equal to the noise correlation. In the period-2 regime a Markov model explains qualitatively the main dynamical characteristics. Furthermore, two different mechanisms are introduced which lead to a higher correlation of the systems than the environmental correlation. The new effect of "correlation resonance" is described, i. e. the correlation yields a maximum depending on the noise intensity. In the second part of the thesis an automatic control method is presented which synchronizes different systems in a robust way. This method is inspired by phase-locked loops and is based on a feedback loop with a differential control scheme, which allows to change the phases of the controlled systems. The effectiveness of the approach is demonstrated for controlled phase synchronization of regular oscillators and foodweb models.}, subject = {Markov-Prozess}, language = {en} }