@article{NoteKoetzKosmellaetal.2005, author = {Note, Carine and Koetz, Joachim and Kosmella, Sabine and Tiersch, Brigitte}, title = {Hydrophobically modified polyelectrolytes used as reducing and stabilizing agent for the formation of gold nanoparticles}, issn = {0303-402X}, year = {2005}, abstract = {This paper is focused on the synthesis and characterization of hydrophobically modified polyelectrolytes and their use as reducing as well as stabilizing agents for the formation of gold nanoparticles. Commercially available poly(acrylic acid) has been hydrophobically modified with various degrees of grafting of butylamine introduced randomly along the chain. Different analytical methods are performed, i.e., IR and H-1-NMR spectroscopy in combination with elemental analysis to determine the degree of grafting. The modified polymers can successfully be used for the controlled single-step synthesis and stabilization of gold nanoparticles. The process of nanoparticle formation is investigated by means of UV-vis spectroscopy. The size and shape of the particles obtained in the presence of unmodified or modified polyelectrolytes are characterized by dynamic light scattering, zeta potential measurements and transmission electron microscopy. The polyelectrolytes were involved in the crystallization process of the nanoparticles, and in the presence of hydrophobic microdomains at the particle surface, a better stabilization at higher temperature can be observed}, language = {en} } @misc{KoetzReicheltKosmellaetal.2005, author = {Koetz, Joachim and Reichelt, S. and Kosmella, Sabine and Tiersch, Brigitte}, title = {Recovery of nanoparticles produced in phosphatidylcholine-based template phases}, issn = {0021-9797}, year = {2005}, abstract = {This paper focuses on the characterization and use of polymer-modified phosphatidylcholine (PC)/sodium dodecyl sulfate (SDS)-based inverse microemulsions as a template phase for BaSO4 nanoparticle formation. The area of the optically clear inverse microemulsion phase in the isooctane/hexanol/water/PC/SDS system is not significantly changed by adding polyelectrolytes, i.e., poly(diallyldimethylammonium chloride) (PDADMAC), or amphoteric copolymers of diallyldimethylammonium chloride and maleamid acid to the SDS-modified inverse microemulsion. Shear experiments show non- Newtonian flow behavior and oscillation experiments show a frequency-dependent viscosity increase (dilatant behavior) of the microemulsions. Small amounts of bulk water were identified by means of differential scanning calorimetry. One can conclude that the macromolecules are incorporated into the individual droplets, and polymer-filled microemulsions are formed. The polymer-filled microemulsions were used as a template phase for the synthesis of BaSO4 nanoparticles. After solvent evaporation the nanoparticles were redispersed in water and isooctane, respectively. The polymers incorporated into the microemulsion are involved in the redispersion process and influence the size and shape of the redispersed BaSO4 particles in a specific way. The crystallization process mainly depends on the type of solvent and the polymer component added. In the presence of the cationic polyelectrolyte PDADMAC the crystallization to larger cubic crystals is inhibited, and layers consisting of polymer-stabilized spherical nanoparticles of BaSO4 (6 nm in size) will be observed. (c) 2004 Elsevier Inc. All rights reserved}, language = {en} }