@article{SanderHamannHainichetal.2015, author = {Sander, A. and Hamann, Wolf-Rainer and Hainich, Rainer and Shenar, Tomer and Todt, Helge Tobias}, title = {Hydrodynamic modeling of massive star atmospheres}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87857}, pages = {139 -- 142}, year = {2015}, abstract = {In the last decades, stellar atmosphere codes have become a key tool in understanding massive stars, including precise calculations of stellar and wind parameters, such as temperature, massloss rate, and terminal wind velocity. Nevertheless, for these models the hydrodynamic equation is not solved in the wind. Motivated by the results of the CAK theory, the models typically use a beta velocity law, which however turns out not to be adequate for stars with very strong winds, and treat the mass-loss rate as a free parameter. In a new branch of the Potsdam Wolf-Rayet model atmosphere (PoWR) code, we solve the hydrodynamic equation consistently throughout the stellar atmosphere. The PoWR code performs the calculation of the radiative force without approximations (e.g. Sobolev). We show the impact of hydrodynamically consistent modelling on OB and WR stars in comparison to conventional models and discuss the obtained velocity fields and their impact on the observed spectral lines.}, language = {en} } @article{AbdoAckermannAjelloetal.2011, author = {Abdo, A. A. and Ackermann, Margit and Ajello, M. and Allafort, A. J. and Baldini, L. and Ballet, J. and Barbiellini, G. and Baring, M. G. and Bastieri, D. and Bechtol, K. C. and Bellazzini, R. and Berenji, B. and Blandford, R. D. and Bloom, E. D. and Bonamente, E. and Borgland, A. W. and Bouvier, A. and Brandt, T. J. and Bregeon, Johan and Brez, A. and Brigida, M. and Bruel, P. and Buehler, R. and Buson, S. and Caliandro, G. A. and Cameron, R. A. and Cannon, A. and Caraveo, P. A. and Carrigan, Svenja and Casandjian, J. M. and Cavazzuti, E. and Cecchi, C. and Celik, O. and Charles, E. and Chekhtman, A. and Cheung, C. C. and Chiang, J. and Ciprini, S. and Claus, R. and Cohen-Tanugi, J. and Conrad, Jan and Cutini, S. and Dermer, C. D. and de Palma, F. and do Couto e Silva, E. and Drell, P. S. and Dubois, R. and Dumora, D. and Favuzzi, C. and Fegan, S. J. and Ferrara, E. C. and Focke, W. B. and Fortin, P. and Frailis, M. and Fuhrmann, L. and Fukazawa, Y. and Funk, S. and Fusco, P. and Gargano, F. and Gasparrini, D. and Gehrels, N. and Germani, S. and Giglietto, N. and Giordano, F. and Giroletti, M. and Glanzman, T. and Godfrey, G. and Grenier, I. A. and Guillemot, L. and Guiriec, S. and Hayashida, M. and Hays, E. and Horan, D. and Hughes, R. E. and Johannesson, G. and Johnson, A. S. and Johnson, W. N. and Kadler, M. and Kamae, T. and Katagiri, H. and Kataoka, J. and Knoedlseder, J. and Kuss, M. and Lande, J. and Latronico, L. and Lee, S. -H. and Lemoine-Goumard, M. and Longo, F. and Loparco, F. and Lott, B. and Lovellette, M. N. and Lubrano, P. and Madejski, G. M. and Makeev, A. and Max-Moerbeck, W. and Mazziotta, Mario Nicola and McEnery, J. E. and Mehault, J. and Michelson, P. F. and Mitthumsiri, W. and Mizuno, T. and Moiseev, A. A. and Monte, C. and Monzani, M. E. and Morselli, A. and Moskalenko, I. V. and Murgia, S. and Naumann-Godo, M. and Nishino, S. and Nolan, P. L. and Norris, J. P. and Nuss, E. and Ohsugi, T. and Okumura, A. and Omodei, N. and Orlando, E. and Ormes, J. F. and Paneque, D. and Panetta, J. H. and Parent, D. and Pavlidou, V. and Pearson, T. J. and Pelassa, V. and Pepe, M. and Pesce-Rollins, M. and Piron, F. and Porter, T. A. and Raino, S. and Rando, R. and Razzano, M. and Readhead, A. and Reimer, A. and Reimer, O. and Richards, J. L. and Ripken, J. and Ritz, S. and Roth, M. and Sadrozinski, H. F. -W. and Sanchez, D. and Sander, A. and Scargle, J. D. and Sgro, C. and Siskind, E. J. and Smith, P. D. and Spandre, G. and Spinelli, P. and Stawarz, L. and Stevenson, M. and Strickman, M. S. and Sokolovsky, K. V. and Suson, D. J. and Takahashi, H. and Takahashi, T. and Tanaka, T. and Thayer, J. B. and Thayer, J. G. and Thompson, D. J. and Tibaldo, L. and Torres, F. and Tosti, G. and Tramacere, A. and Uchiyama, Y. and Usher, T. L. and Vandenbroucke, J. and Vasileiou, V. and Vilchez, N. and Vitale, V. and Waite, A. P. and Wang, P. and Wehrle, A. E. and Winer, B. L. and Wood, K. S. and Yang, Z. and Ylinen, T. and Zensus, J. A. and Ziegler, M. and Aleksic, J. and Antonelli, L. A. and Antoranz, P. and Backes, Michael and Barrio, J. A. and Gonzalez, J. Becerra and Bednarek, W. and Berdyugin, A. and Berger, K. and Bernardini, E. and Biland, A. and Blanch Bigas, O. and Bock, R. K. and Boller, A. and Bonnoli, G. and Bordas, Pol and Tridon, D. Borla and Bosch-Ramon, Valentin and Bose, D. and Braun, I. and Bretz, T. and Camara, M. and Carmona, E. and Carosi, A. and Colin, P. and Colombo, E. and Contreras, J. L. and Cortina, J. and Covino, S. and Dazzi, F. and de Angelis, A. and del Pozo, E. De Cea and De Lotto, B. and De Maria, M. and De Sabata, F. and Mendez, C. Delgado and Ortega, A. Diago and Doert, M. and Dominguez, A. and Prester, Dijana Dominis and Dorner, D. and Doro, M. and Elsaesser, D. and Ferenc, D. and Fonseca, M. V. and Font, L. and Lopen, R. J. Garcia and Garczarczyk, M. and Gaug, M. and Giavitto, G. and Godinovi, N. and Hadasch, D. and Herrero, A. and Hildebrand, D. and Hoehne-Moench, D. and Hose, J. and Hrupec, D. and Jogler, T. and Klepser, S. and Kraehenbuehl, T. and Kranich, D. and Krause, J. and La Barbera, A. and Leonardo, E. and Lindfors, E. and Lombardi, S. and Lopez, M. and Lorenz, E. and Majumdar, P. and Makariev, E. and Maneva, G. and Mankuzhiyil, N. and Mannheim, K. and Maraschi, L. and Mariotti, M. and Martinez, M. and Mazin, D. and Meucci, M. and Miranda, J. M. and Mirzoyan, R. and Miyamoto, H. and Moldon, J. and Moralejo, A. and Nieto, D. and Nilsson, K. and Orito, R. and Oya, I. and Paoletti, R. and Paredes, J. M. and Partini, S. and Pasanen, M. and Pauss, F. and Pegna, R. G. and Perez-Torres, M. A. and Persic, M. and Peruzzo, J. and Pochon, J. and Moroni, P. G. Prada and Prada, F. and Prandini, E. and Puchades, N. and Puljak, I. and Reichardt, T. and Reinthal, R. and Rhode, W. and Ribo, M. and Rico, J. and Rissi, M. and Ruegamer, S. and Saggion, A. and Saito, K. and Saito, T. Y. and Salvati, M. and Sanchez-Conde, M. and Satalecka, K. and Scalzotto, V. and Scapin, V. and Schultz, C. and Schweizer, T. and Shayduk, M. and Shore, S. N. and Sierpowska-Bartosik, A. and Sillanpaa, A. and Sitarek, J. and Sobczynska, D. and Spanier, F. and Spiro, S. and Stamerra, A. and Steinke, B. and Storz, J. and Strah, N. and Struebig, J. C. and Suric, T. and Takalo, L. O. and Tavecchio, F. and Temnikov, P. and Terzic, T. and Tescaro, D. and Teshima, M. and Vankov, H. and Wagner, R. M. and Weitzel, Q. and Zabalza, V. and Zandanel, F. and Zanin, R. and Acciari, V. A. and Arlen, T. and Aune, T. and Benbow, W. and Boltuch, D. and Bradbury, S. M. and Buckley, J. H. and Bugaev, V. and Cannon, A. and Cesarini, A. and Ciupik, L. and Cui, W. and Dickherber, R. and Errando, M. and Falcone, A. and Finley, J. P. and Finnegan, G. and Fortson, L. and Furniss, A. and Galante, N. and Gall, D. and Gillanders, G. H. and Godambe, S. and Grube, J. and Guenette, R. and Gyuk, G. and Hanna, D. and Holder, J. and Huang, D. and Hui, C. M. and Humensky, T. B. and Kaaret, P. and Karlsson, N. and Kertzman, M. and Kieda, D. and Konopelko, A. and Krawczynski, H. and Krennrich, F. and Lang, M. J. and Maier, G. and McArthur, S. and McCann, A. and McCutcheon, M. and Moriarty, P. and Mukherjee, R. and Ong, R. and Otte, N. and Pandel, D. and Perkins, J. S. and Pichel, A. and Pohl, M. and Quinn, J. and Ragan, K. and Reyes, L. C. and Reynolds, P. T. and Roache, E. and Rose, H. J. and Rovero, A. C. and Schroedter, M. and Sembroski, G. H. and Senturk, G. D. and Steele, D. and Swordy, S. P. and Tesic, G. and Theiling, M. and Thibadeau, S. and Varlotta, A. and Vincent, S. and Wakely, S. P. and Ward, J. E. and Weekes, T. C. and Weinstein, A. and Weisgarber, T. and Williams, D. A. and Wood, M. and Zitzer, B. and Villata, M. and Raiteri, C. M. and Aller, H. D. and Aller, M. F. and Arkharov, A. A. and Blinov, D. A. and Calcidese, P. and Chen, W. P. and Efimova, N. V. and Kimeridze, G. and Konstantinova, T. S. and Kopatskaya, E. N. and Koptelova, E. and Kurtanidze, O. M. and Kurtanidze, S. O. and Lahteenmaki, A. and Larionov, V. M. and Larionova, E. G. and Larionova, L. V. and Ligustri, R. and Morozova, D. A. and Nikolashvili, M. G. and Sigua, L. A. and Troitsky, I. S. and Angelakis, E. and Capalbi, M. and Carraminana, A. and Carrasco, L. and Cassaro, P. and de la Fuente, E. and Gurwell, M. A. and Kovalev, Y. Y. and Kovalev, Yu. A. and Krichbaum, T. P. and Krimm, H. A. and Leto, Paolo and Lister, M. L. and Maccaferri, G. and Moody, J. W. and Mori, Y. and Nestoras, I. and Orlati, A. and Pagani, C. and Pace, C. and Pearson, R. and Perri, M. and Piner, B. G. and Pushkarev, A. B. and Ros, E. and Sadun, A. C. and Sakamoto, T. and Tornikoski, M. and Yatsu, Y. and Zook, A.}, title = {Insights into the high-energy gamma-Ray emission of markarian 501 fromextensive multifrequency observations in the fermi era}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {727}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {Fermi-LAT Collaboration, MAGIC Collaboration, VERITAS Collaboration}, issn = {0004-637X}, doi = {10.1088/0004-637X/727/2/129}, pages = {26}, year = {2011}, abstract = {We report on the gamma-ray activity of the blazar Mrk 501 during the first 480 days of Fermi operation. We find that the average Large Area Telescope (LAT) gamma-ray spectrum of Mrk 501 can be well described by a single power-law function with a photon index of 1.78 +/- 0.03. While we observe relatively mild flux variations with the Fermi-LAT (within less than a factor of two), we detect remarkable spectral variability where the hardest observed spectral index within the LAT energy range is 1.52 +/- 0.14, and the softest one is 2.51 +/- 0.20. These unexpected spectral changes do not correlate with the measured flux variations above 0.3 GeV. In this paper, we also present the first results from the 4.5 month long multifrequency campaign (2009 March 15-August 1) on Mrk 501, which included the Very Long Baseline Array (VLBA), Swift, RXTE, MAGIC, and VERITAS, the F-GAMMA, GASP-WEBT, and other collaborations and instruments which provided excellent temporal and energy coverage of the source throughout the entire campaign. The extensive radio to TeV data set from this campaign provides us with the most detailed spectral energy distribution yet collected for this source during its relatively low activity. The average spectral energy distribution of Mrk 501 is well described by the standard one-zone synchrotron self-Compton (SSC) model. In the framework of this model, we find that the dominant emission region is characterized by a size less than or similar to 0.1 pc (comparable within a factor of few to the size of the partially resolved VLBA core at 15-43 GHz), and that the total jet power (similar or equal to 10(44) erg s(-1)) constitutes only a small fraction (similar to 10(-3)) of the Eddington luminosity. The energy distribution of the freshly accelerated radiating electrons required to fit the time-averaged data has a broken power-law form in the energy range 0.3 GeV-10 TeV, with spectral indices 2.2 and 2.7 below and above the break energy of 20 GeV. We argue that such a form is consistent with a scenario in which the bulk of the energy dissipation within the dominant emission zone of Mrk 501 is due to relativistic, proton-mediated shocks. We find that the ultrarelativistic electrons and mildly relativistic protons within the blazar zone, if comparable in number, are in approximate energy equipartition, with their energy dominating the jet magnetic field energy by about two orders of magnitude.}, language = {en} } @article{KubatovaHamannTodtetal.2015, author = {Kub{\´a}tov{\´a}, Brankica and Hamann, Wolf-Rainer and Todt, Helge Tobias and Sander, A. and Steinke, M. and Hainich, Rainer and Shenar, Tomer}, title = {Macroclumping in WR 136}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87823}, pages = {125 -- 128}, year = {2015}, abstract = {Macroclumping proved to resolve the discordance between different mass-loss rate diagnostics for O-type stars, in particular between Hα and the P v resonance lines. In this paper, we report first results from a corresponding investigation for WR stars. We apply our detailed 3-D Monte Carlo (MC) line formation code to the P v resonance doublet and show, for the Galactic WNL star WR136, that macroclumping is require to bring this line in accordance with the mass-loss rate derived from the emission-line spectrum.}, language = {en} } @article{HnatkovaVesselVossetal.1998, author = {Hnatkova, Katarina and Vessel, N. and Voss, Andreas and Kurths, J{\"u}rgen and Sander, A. and Schirdewan, Alexander and Camm, A. J. and Malik, Marek}, title = {Multiparametric analysis of heart rate variability used for risk stratification among survivors of acute myocardial infarction}, issn = {0895-2795}, year = {1998}, language = {en} } @article{OskinovaSteinkeHamannetal.2013, author = {Oskinova, Lida and Steinke, M. and Hamann, Wolf-Rainer and Sander, A. and Todt, Helge Tobias and Liermann, Adriane}, title = {One of the most massive stars in the Galaxy may have formed in isolation}, series = {Monthly notices of the Royal Astronomical Society}, volume = {436}, journal = {Monthly notices of the Royal Astronomical Society}, number = {4}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stt1817}, pages = {3357 -- 3365}, year = {2013}, abstract = {Very massive stars, 100 times heavier than the sun, are rare. It is not yet known whether such stars can form in isolation or only in star clusters. The answer to this question is of fundamental importance. The central region of our Galaxy is ideal for investigating very massive stars and clusters located in the same environment. We used archival infrared images to investigate the surroundings of apparently isolated massive stars presently known in the Galactic Centre (GC). We find that two such isolated massive stars display bow shocks and hence may be 'runaways' from their birthplace. Thus, some isolated massive stars in the GC region might have been born in star clusters known in this region. However, no bow shock is detected around the isolated star WR 102ka (Peony nebula star), which is one of the most massive and luminous stars in the Galaxy. This star is located at the centre of an associated circumstellar nebula. To study whether a star cluster may be 'hidden' in the surroundings of WR 102ka, to obtain new and better spectra of this star, and to measure its radial velocity, we obtained observations with the integral-field spectrograph SINFONI at the ESO's Very Large Telescope. Our observations confirm that WR 102ka is one of the most massive stars in the Galaxy and reveal that this star is not associated with a star cluster. We suggest that WR 102ka has been born in relative isolation, outside of any massive star cluster.}, language = {en} } @article{SanderHamannTodt2012, author = {Sander, A. and Hamann, Wolf-Rainer and Todt, Helge Tobias}, title = {The Galactic WC stars Stellar parameters from spectral analyses indicate a new evolutionary sequence}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {540}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201117830}, pages = {79}, year = {2012}, abstract = {Context. The life cycles of massive stars from the main sequence to their explosion as supernovae or gamma ray bursts are not yet fully clear, and the empirical results from spectral analyses are partly in conflict with current evolutionary models. The spectral analysis of Wolf-Rayet stars requires the detailed modeling of expanding stellar atmospheres in non-LTE. The Galactic WN stars have been comprehensively analyzed with such models of the latest stage of sophistication, while a similarly comprehensive study of the Galactic WC sample remains undone. Aims. We aim to establish the stellar parameters and mass-loss rates of the Galactic WC stars. These data provide the empirical basis of studies of (i) the role of WC stars in the evolution of massive stars, (ii) the wind-driving mechanisms, and (iii) the feedback of WC stars as input to models of the chemical and dynamical evolution of galaxies. Methods. We analyze the nearly complete sample of un-obscured Galactic WC stars, using optical spectra as well as ultraviolet spectra when available. The observations are fitted with theoretical spectra, using the Potsdam Wolf-Rayet (PoWR) model atmosphere code. A large grid of line-blanked models has been established for the range of WC subtypes WC4 - WC8, and smaller grids for the WC9 parameter domain. Both WO stars and WN/WC transit types are also analyzed using special models. Results. Stellar and atmospheric parameters are derived for more than 50 Galactic WC and two WO stars, covering almost the whole Galactic WC population as far as the stars are single, and un-obscured in the visual. In the Hertzsprung-Russell diagram, the WC stars reside between the hydrogen and the helium zero-age main sequences, having luminosities L from 10(4.9) to 10(5.6) L-circle dot. The mass-loss rates scale very tightly with L-0.8. The two WO stars in our sample turn out to be outstandingly hot (approximate to 200 kK) and do not fit into the WC scheme. Conclusions. By comparing the empirical WC positions in the Hertzsprung-Russell diagram with evolutionary models, and from recent supernova statistics, we conclude that WC stars have evolved from initial masses between 20 solar masses and 45 M-circle dot. In contrast to previous assumptions, it seems that WC stars in general do not descend from the most massive stars. Only the WO stars might stem from progenitors that have been initially more massive than 45 M-circle dot.}, language = {en} } @article{SteinkeOskinovaHamannetal.2015, author = {Steinke, M. and Oskinova, Lida and Hamann, Wolf-Rainer and Sander, A.}, title = {The Wolf-Rayet stars WR102c and 102ka and their isolation}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88503}, pages = {365}, year = {2015}, abstract = {While the majority of very massive stars is clearly found in clusters, there are also very massive objects not associated with any cluster, suggesting they may have been born in isolation. In order to gain more insights, we studied the regions around two WR stars in the Galactic Center region. To understand the nature of the potential cluster around massive stars, photometry alone is not sufficient. We therefore used the ESO VLT/SINFONI integral field spectrograph to obtain photometry and spectra for the whole region around our two candidate stars. In total, more than 60 stars have been found and assigned a spectral type.}, language = {en} } @misc{VinkHegerKrumholzetal.2012, author = {Vink, Jorick Sandor and Heger, Alexander and Krumholz, Mark R. and Puls, Joachim and Banerjee, Shiladitya and Castro, Norberto and Chen, K.-J. and Chen{\`e}, A.-N. and Crowther, P. A. and Daminelli, A. and Gr{\"a}fener, G. and Groh, J. H. and Hamann, Wolf-Rainer and Heap, S. and Herrero, A. and Kaper, L. and Najarro, F. and Oskinova, Lida and Roman-Lopes, A. and Rosen, A. and Sander, A. and Shirazi, M. and Sugawara, Y. and Tramper, F. and Vanbeveren, D. and Voss, R. and Wofford, A. and Zhang, Y.}, title = {Very massive stars in the local universe}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {601}, issn = {1866-8372}, doi = {10.25932/publishup-41522}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-415220}, pages = {29}, year = {2012}, abstract = {Recent studies have claimed the existence of very massive stars (VMS) up to 300 M⊙ in the local Universe. As this finding may represent a paradigm shift for the canonical stellar upper-mass limit of 150 M⊙, it is timely to discuss the status of the data, as well as the far-reaching implications of such objects. We held a Joint Discussion at the General Assembly in Beijing to discuss (i) the determination of the current masses of the most massive stars, (ii) the formation of VMS, (iii) their mass loss, and (iv) their evolution and final fate. The prime aim was to reach broad consensus between observers and theorists on how to identify and quantify the dominant physical processes.}, language = {en} }