@article{MarcHoviusMeunieretal.2016, author = {Marc, Odin and Hovius, Niels and Meunier, Patrick and Gorum, Tolga and Uchida, Taro}, title = {A seismologically consistent expression for the total area and volume of earthquake-triggered landsliding}, series = {Journal of geophysical research : Earth surface}, volume = {121}, journal = {Journal of geophysical research : Earth surface}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9003}, doi = {10.1002/2015JF003732}, pages = {640 -- 663}, year = {2016}, abstract = {We present a new, seismologically consistent expression for the total area and volume of populations of earthquake-triggered landslides. This model builds on a set of scaling relationships between key parameters, such as landslide spatial density, seismic ground acceleration, fault length, earthquake source depth, and seismic moment. To assess the model we have assembled and normalized a catalog of landslide inventories for 40 shallow, continental earthquakes. Low landscape steepness causes systematic overprediction of the total area and volume of landslides. When this effect is accounted for, the model predicts the total landslide volume of 63\% of 40 cases to within a factor 2 of the volume estimated from observations (R-2 = 0.76). The prediction of total landslide area is also sensitive to the landscape steepness, but less so than the total volume, and it appears to be sensitive to controls on the landslide size-frequency distribution, and possibly the shaking duration. Some outliers are likely associated with exceptionally strong rock mass in the epicentral area, while others may be related to seismic source complexities ignored by the model. However, the close match between prediction and estimate for about two thirds of cases in our database suggests that rock mass strength is similar in many cases and that our simple seismic model is often adequate, despite the variety of lithologies and tectonic settings covered. This makes our expression suitable for integration into landscape evolution models and application to the anticipation or rapid assessment of secondary hazards associated with earthquakes.}, language = {en} } @misc{MarcHovius2015, author = {Marc, Odin and Hovius, Niels}, title = {Amalgamation in landslide maps}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {485}, issn = {1866-8372}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-408075}, pages = {11}, year = {2015}, abstract = {Inventories of individually delineated landslides are a key to understanding landslide physics and mitigating their impact. They permit assessment of area-frequency distributions and landslide volumes, and testing of statistical correlations between landslides and physical parameters such as topographic gradient or seismic strong motion. Amalgamation, i.e. the mapping of several adjacent landslides as a single polygon, can lead to potentially severe distortion of the statistics of these inventories. This problem can be especially severe in data sets produced by automated mapping. We present five inventories of earthquake-induced landslides mapped with different materials and techniques and affected by varying degrees of amalgamation. Errors on the total landslide volume and power-law exponent of the area-frequency distribution, resulting from amalgamation, may be up to 200 and 50\%, respectively. We present an algorithm based on image and digital elevation model (DEM) analysis, for automatic identification of amalgamated polygons. On a set of about 2000 polygons larger than 1000 m2, tracing landslides triggered by the 1994 Northridge earthquake, the algorithm performs well, with only 2.7-3.6\% incorrectly amalgamated landslides missed and 3.9-4.8\% correct polygons incorrectly identified as amalgams. This algorithm can be used broadly to check landslide inventories and allow faster correction by automating the identification of amalgamation.}, language = {en} } @article{MarcHovius2015, author = {Marc, Odin and Hovius, Niels}, title = {Amalgamation in landslide maps}, series = {Natural hazards and earth system sciences}, volume = {15}, journal = {Natural hazards and earth system sciences}, number = {4}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1561-8633}, doi = {10.5194/nhess-15-723-2015}, pages = {723 -- 733}, year = {2015}, abstract = {Inventories of individually delineated landslides are a key to understanding landslide physics and mitigating their impact. They permit assessment of area-frequency distributions and landslide volumes, and testing of statistical correlations between landslides and physical parameters such as topographic gradient or seismic strong motion. Amalgamation, i.e. the mapping of several adjacent landslides as a single polygon, can lead to potentially severe distortion of the statistics of these inventories. This problem can be especially severe in data sets produced by automated mapping. We present five inventories of earthquake-induced landslides mapped with different materials and techniques and affected by varying degrees of amalgamation. Errors on the total landslide volume and power-law exponent of the area-frequency distribution, resulting from amalgamation, may be up to 200 and 50 \%, respectively. We present an algorithm based on image and digital elevation model (DEM) analysis, for automatic identification of amalgamated polygons. On a set of about 2000 polygons larger than 1000 m(2), tracing landslides triggered by the 1994 Northridge earthquake, the algorithm performs well, with only 2.7-3.6\% incorrectly amalgamated landslides missed and 3.9-4.8\% correct polygons incorrectly identified as amalgams. This algorithm can be used broadly to check landslide inventories and allow faster correction by automating the identification of amalgamation.}, language = {en} } @article{BrunelloAndermannMarcetal.2020, author = {Brunello, Camilla Francesca and Andermann, Christoff and Marc, Odin and Schneider, Katharina A. and Comiti, Francesco and Achleitner, Stefan and Hovius, Niels}, title = {Annually resolved monsoon onset and withdrawal dates across the Himalayas derived from local precipitation statistics}, series = {Geophysical research letters}, volume = {47}, journal = {Geophysical research letters}, number = {23}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1029/2020GL088420}, pages = {12}, year = {2020}, abstract = {A local and flexible definition of the monsoon season based on hydrological evidence is important for the understanding and management of Himalayan water resources. Here, we present an objective statistical method to retrieve seasonal hydrometeorological transitions. Applied to daily rainfall data (1951-2015), this method shows an average longitudinal delay of similar to 15 days, with later monsoon onset and earlier withdrawal in the western Himalaya, consistent with the continental progression of wet air masses. This delay leads to seasons of different length along the Himalaya and biased precipitation amounts when using uniform calendric monsoon boundaries. In the Central Himalaya annual precipitation has increased, due primarily to an increase of premonsoon precipitation. These findings highlight issues associated with a static definition of monsoon boundaries and call for a deeper understanding of nonmonsoonal precipitation over the Himalayan water tower.
Plain Language Summary Precipitation in the Himalayas determines water availability for the Indian foreland with large socioeconomic implications. Despite its importance, spatial and temporal patterns of precipitation are poorly understood. Here, we estimate the long-term average and trends of seasonal precipitation at the scale of individual catchments draining the Himalayas. We apply a statistical method to detect the timing of hydrometeorological seasons from local precipitation measurements, focusing on monsoon onset and withdrawal. We identify longitudinal and latitudinal delays, resulting in seasons of different length along and across the Himalayas. These spatial patterns and the annual variability of the monsoon boundaries mean that oft-used, fixed calendric dates, for example, 1 June to 30 September, may be inadequate for retrieving monsoon rainfall totals. Moreover, we find that, despite its prominent contribution to annual rainfall totals, the Indian summer monsoon cannot explain the increase of the annual precipitation over the Central Himalayas. Instead, this appears to be mostly driven by changes in premonsoon and winter rainfall. So far, little attention has been paid to premonsoon precipitation, but governed by evaporative processes and surface water availability, it may be enhanced by irrigation and changed land use in the Gangetic foreland.}, language = {en} } @article{CookHoviusWittmannOelzeetal.2017, author = {Cook, Kristen L. and Hovius, Niels and Wittmann-Oelze, Hella and Heimsath, Arjun M. and Lee, Yuan-Hsi}, title = {Causes of rapid uplift and exceptional topography of Gongga Shan on the eastern margin of the Tibetan Plateau}, series = {Earth \& planetary science letters}, volume = {481}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2017.10.043}, pages = {328 -- 337}, year = {2017}, abstract = {Erosion and tectonic uplift are widely thought to be coupled through feedbacks involving orographic precipitation, relief development, and crustal weakening. In many orogenic systems, it can be difficult to distinguish whether true feedbacks exist, or whether observed features are a consequence of tectonic forcing. To help elucidate these interactions, we examine Gongga Shan, a 7556 m peak on the eastern margin of the Tibetan Plateau where cosmogenic Be-10 basin-wide erosion rates reach >5 mm/yr, defining a region of localized rapid erosion associated with a restraining bend in the left-lateral Xianshuihe Fault. Erosion rates are consistent with topography, thermochronometry, and geodetic data, suggesting a stable pattern of uplift and exhumation over at least the past 2-3 My. Transpression along the Xianshuihe Fault, orographically enhanced precipitation, thermally weakened crust, and substantial local relief all developed independently in the Gongga region and existed there prior to the uplift of Gongga Shan. However, only where all of these conditions are present do the observed topographic and erosional extremes exist, and their relative timing indicates that these conditions are not a consequence of rapid uplift. We conclude that their collocation at 3-4 Ma set into motion a series of feedbacks between erosion and uplift that has resulted in the exceptionally high topography and rapid erosion rates observed today.}, language = {en} } @article{EmbersonHoviusGalyetal.2016, author = {Emberson, Robert and Hovius, Niels and Galy, Albert and Marc, Odin}, title = {Chemical weathering in active mountain belts controlled by stochastic bedrock landsliding}, series = {Nature geoscience}, volume = {9}, journal = {Nature geoscience}, publisher = {Nature Publ. Group}, address = {New York}, issn = {1752-0894}, doi = {10.1038/NGEO2600}, pages = {42 -- +}, year = {2016}, abstract = {A link between chemical weathering and physical erosion exists at the catchment scale over a wide range of erosion rates(1,2). However, in mountain environments, where erosion rates are highest, weathering may be kinetically limited(3-5) and therefore decoupled from erosion. In active mountain belts, erosion is driven by bedrock landsliding(6) at rates that depend strongly on the occurrence of extreme rainfall or seismicity(7). Although landslides affect only a small proportion of the landscape, bedrock landsliding can promote the collection and slow percolation of surface runoff in highly fragmented rock debris and create favourable conditions for weathering. Here we show from analysis of surface water chemistry in the Southern Alps of New Zealand that weathering in bedrock landslides controls the variability in solute load of these mountain rivers. We find that systematic patterns in surface water chemistry are strongly associated with landslide occurrence at scales from a single hillslope to an entire mountain belt, and that landslides boost weathering rates and river solute loads over decades. We conclude that landslides couple erosion and weathering in fast-eroding uplands and, thus, mountain weathering is a stochastic process that is sensitive to climatic and tectonic controls on mass wasting processes.}, language = {en} } @article{EmbersonGalyHovius2017, author = {Emberson, Robert and Galy, Albert and Hovius, Niels}, title = {Combined effect of carbonate and biotite dissolution in landslides biases silicate weathering proxies}, series = {Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society}, volume = {213}, journal = {Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society}, publisher = {Elsevier}, address = {Oxford}, issn = {0016-7037}, doi = {10.1016/j.gca.2017.07.014}, pages = {418 -- 434}, year = {2017}, abstract = {Long-term estimates of the dissolution of silicate rock are generally derived from a range of isotopic proxies, such as the radiogenic strontium isotope ratio (Sr-87/Sr-86), which are preserved in sediment archives. For these systems to fairly represent silicate weathering, the changes in isotopic ratios in terrestrial surface waters should correspond to changes in the overall silicate dissolution. This assumes that the silicate mineral phases that act as sources of a given isotope dissolve at a rate that is proportional to the overall silicate weathering. Bedrock landsliding exhumes large quantities of fresh rock for weathering in transient storage, and rapid weathering in these deposits is controlled primarily by dissolution of the most reactive phases. In this study, we test the hypothesis that preferential weathering of these labile minerals can decouple the dissolution of strontium sources from the actual silicate weathering rates in the rapidly eroding Western Southern Alps (WSA) of New Zealand. We find that rapid dissolution of relatively radiogenic calcite and biotite in landslides leads to high local fluxes in strontium with isotopic ratios that offer no clear discrimination between sources. These higher fluxes of radiogenic strontium are in contrast to silicate weathering rates in landslides that are not systematically elevated. On a mountain belt scale, radiogenic strontium fluxes are not coupled to volumes of recent landslides in large (>100 km(2)) catchments, but silicate weathering fluxes are. Such decoupling is likely due first to the broad variability in the strontium content of carbonate minerals, and second to the combination of radiogenic strontium released from both biotite and carbonate in recent landslides. This study supports previous work suggesting the limited utility of strontium isotopes as a system to study silicate weathering in the WSA. Crucially however, in settings where bedrock landsliding is a dominant erosive process there is potential for both random and systematic bias in isotope proxies if the most reactive phases exposed for dissolution by landslides disproportionately contribute to the proxy of choice. This clearly suggests that the isotopic composition of marine Sr is a proxy for periods of rapid mountain uplift and erosion rather than for the associated enhanced silicate weathering. (C) 2017 Elsevier Ltd. All rights reserved.}, language = {en} } @article{GollyTurowskiBadouxetal.2017, author = {Golly, Antonius and Turowski, Jens M. and Badoux, Alexandre and Hovius, Niels}, title = {Controls and feedbacks in the coupling of mountain channels and hillslopes}, series = {Geology}, volume = {45}, journal = {Geology}, publisher = {Geological Society of America}, address = {Boulder}, issn = {0091-7613}, doi = {10.1130/G38831.1}, pages = {307 -- 310}, year = {2017}, abstract = {Mountain channels can be strongly coupled with adjacent hillslopes, exchanging both mass and energy. However, hypotheses of the underlying cause and effect relations are based on indirect observations that do not resolve the mechanics of channel-hillslope coupling at the process scale. Here we present direct observational data of a coupled channel-hillslope system in the catchment area of the Erlenbach, a mountain stream in Switzerland. A slow-moving landslide flanking this alpine stream failed after a flood had eroded an alluvial step in the channel at its base, representing evidence for an upsystem link in channel-hillslope coupling. Progressive accumulation of landslide debris in the channel resulted in a renewed step, stabilizing the hillslope and restoring the channel step in a downsystem link. Thus, upsystem and downsystem coupling mechanisms are joined in a negative feedback cycle. In this cycle, debuttressing and rebuttressing due to channel bed erosion and alluviation are the dominant controls on hillslope stability. Based on an order of magnitude estimate it is plausible that the observed feedback mechanism is a relevant process in the production of coarse (>2 mm) sediment in the Erlenbach.}, language = {en} } @article{SchoepaChaoLipovskyetal.2018, author = {Sch{\"o}pa, Anne and Chao, Wei-An and Lipovsky, Bradley P. and Hovius, Niels and White, Robert S. and Green, Robert G. and Turowski, Jens M.}, title = {Dynamics of the Askja caldera July 2014 landslide, Iceland, from seismic signal analysis}, series = {Earth surface dynamics}, volume = {6}, journal = {Earth surface dynamics}, number = {2}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {2196-6311}, doi = {10.5194/esurf-6-467-2018}, pages = {467 -- 485}, year = {2018}, abstract = {Landslide hazard motivates the need for a deeper understanding of the events that occur before, during, and after catastrophic slope failures. Due to the destructive nature of such events, in situ observation is often difficult or impossible. Here, we use data from a network of 58 seismic stations to characterise a large landslide at the Askja caldera, Iceland, on 21 July 2014. High data quality and extensive network coverage allow us to analyse both long- and short-period signals associated with the landslide, and thereby obtain information about its triggering, initiation, timing, and propagation. At long periods, a landslide force history inversion shows that the Askja landslide was a single, large event starting at the SE corner of the caldera lake at 23:24:05 UTC and propagating to the NW in the following 2 min The bulk sliding mass was 7-16 x 10(10) kg, equivalent to a collapsed volume of 35-80 x 10(6) m(3). The sliding mass was displaced downslope by 1260 +/- 250 m. At short periods, a seismic tremor was observed for 30 min before the landslide. The tremor is approximately harmonic with a fundamental frequency of 2.3 Hz and shows time-dependent changes of its frequency content. We attribute the seismic tremor to stick-slip motion along the landslide failure plane. Accelerating motion leading up to the catastrophic slope failure culminated in an aseismic quiescent period for 2 min before the landslide. We propose that precursory seismic signals may be useful in landslide early-warning systems. The 8 h after the main landslide failure are characterised by smaller slope failures originating from the destabilised caldera wall decaying in frequency and magnitude. We introduce the term "afterslides" for this subsequent, declining slope activity after a large landslide.}, language = {en} } @misc{FanScaringiKorupetal.2019, author = {Fan, Xuanmei and Scaringi, Gianvito and Korup, Oliver and West, A. Joshua and van Westen, Cees J. and Tanyas, Hakan and Hovius, Niels and Hales, Tristram C. and Jibson, Randall W. and Allstadt, Kate E. and Zhang, Limin and Evans, Stephen G. and Xu, Chong and Li, Gen and Pei, Xiangjun and Xu, Qiang and Huang, Runqiu}, title = {Earthquake-Induced Chains of Geologic Hazards}, series = {Reviews of geophysics}, volume = {57}, journal = {Reviews of geophysics}, number = {2}, publisher = {American Geophysical Union}, address = {Washington}, issn = {8755-1209}, doi = {10.1029/2018RG000626}, pages = {421 -- 503}, year = {2019}, abstract = {Large earthquakes initiate chains of surface processes that last much longer than the brief moments of strong shaking. Most moderate- and large-magnitude earthquakes trigger landslides, ranging from small failures in the soil cover to massive, devastating rock avalanches. Some landslides dam rivers and impound lakes, which can collapse days to centuries later, and flood mountain valleys for hundreds of kilometers downstream. Landslide deposits on slopes can remobilize during heavy rainfall and evolve into debris flows. Cracks and fractures can form and widen on mountain crests and flanks, promoting increased frequency of landslides that lasts for decades. More gradual impacts involve the flushing of excess debris downstream by rivers, which can generate bank erosion and floodplain accretion as well as channel avulsions that affect flooding frequency, settlements, ecosystems, and infrastructure. Ultimately, earthquake sequences and their geomorphic consequences alter mountain landscapes over both human and geologic time scales. Two recent events have attracted intense research into earthquake-induced landslides and their consequences: the magnitude M 7.6 Chi-Chi, Taiwan earthquake of 1999, and the M 7.9 Wenchuan, China earthquake of 2008. Using data and insights from these and several other earthquakes, we analyze how such events initiate processes that change mountain landscapes, highlight research gaps, and suggest pathways toward a more complete understanding of the seismic effects on the Earth's surface.}, language = {en} }