@article{AsawapiromBulutFarrelletal.2004, author = {Asawapirom, Udom and Bulut, F. and Farrell, Tony and Gadermaier, C. and Gamerith, S. and G{\"u}ntner, Roland and Kietzke, Thomas and Patil, S. and Piok, T. and Montenegro, Rivelino V. D. and Stiller, Burkhard and Tiersch, Brigitte and Landfester, Katharina and List, E. J. W. and Neher, Dieter and Torres, C. S. and Scherf, Ullrich}, title = {Materials for polymer electronics applications semiconducting polymer thin films and nanoparticles}, issn = {1022-1360}, year = {2004}, abstract = {The paper presents two different approaches to nanostructured semiconducting polymer materials: (i) the generation of aqueous semiconducting polymer dispersions (semiconducting polymer nanospheres SPNs) and their processing into dense films and layers, and (ii) the synthesis of novel semiconducting polyfluorene-block-polyaniline (PF-b-PANI) block copolymers composed of conjugated blocks of different redox potentials which form nanosized morphologies in the solid state}, language = {en} } @article{NehlsFuldnerPreisetal.2005, author = {Nehls, B. S. and Fuldner, S. and Preis, E. and Farrell, Tony and Scherf, Ullrich}, title = {Microwave-assisted synthesis of 1,5-and 2,6-linked naphthylene-based ladder polymers}, issn = {0024-9297}, year = {2005}, abstract = {A series of novel arylene ladder polymers incorporating conjugated 1,5- and 2,6-naphthylene building blocks were synthesized. The polyketone ladder polymer precursors were prepared via a palladium-mediated Suzuki-type cross- coupling reaction using both conventional and microwave heating. While the 2,6-naphthylene polyketone precursor (2,6- NPK) was accessible from both heating protocols. the 1,5-naphthylene linked polyketones were only accessible via microwave-assisted (uW) procedures. and the polymer 1,5-NLP2 is the first example of a ladder polymer consisting exclusively of alternating six-membered rings prepared from this reaction sequence. The solution optical spectra of the final naphthylene ladder polymers exhibit the characteristic spectral shapes with a steep absorption edge and a vibronic fine structure common to fully rigidified ladder structures. The structural modification of the substitution pattern and the linkage positions at the naphthylene unit allows some tuning of the absorption and emission bands of the ladder polymers. The 2,6-naphthylene derivative exhibits an intense blue photoluminescence, while the two 1,5-naphthylene- linked ladder polymers exhibit a red shift of the 0-0 electronic transitions, leading to a blue-green photoluminescence}, language = {en} } @article{GalbrechtYangNehlsetal.2005, author = {Galbrecht, Frank and Yang, X. H. and Nehls, B. S. and Neher, Dieter and Farrell, Tony and Scherf, Ullrich}, title = {Semiconducting polyfluorenes with electrophosphorescent on-chain platinum-salen chromophores}, issn = {1359-7345}, year = {2005}, abstract = {The synthesis of statistical fluorene-type copolymers with on-chain Pt-salen phosphorescent units and their use in electrophosphorescent OLEDs is reported}, language = {en} } @article{ZenBilgeGalbrechtetal.2006, author = {Zen, Achmad and Bilge, Askin and Galbrecht, Frank and Alle, Ronald and Meerholz, Klaus and Grenzer, J{\"o}rg and Neher, Dieter and Scherf, Ullrich and Farrell, Tony}, title = {Solution processable organic field-effect transistors utilizing an alpha,alpha '-dihexylpentathiophene- based swivel cruciform}, doi = {10.1021/Ja0573357}, year = {2006}, language = {en} }