@article{ZaikinKurths2006, author = {Zaikin, Alexey and Kurths, J{\"u}rgen}, title = {Optimal length transportation hypothesis to model proteasome product size distribution}, series = {Journal of biological physics : emphasizing physical principles in biological research ; an international journal for the formulation and application of mathematical models in the biological sciences}, volume = {32}, journal = {Journal of biological physics : emphasizing physical principles in biological research ; an international journal for the formulation and application of mathematical models in the biological sciences}, number = {3-4}, publisher = {Springer}, address = {Dordrecht}, issn = {0092-0606}, doi = {10.1007/s10867-006-9014-z}, pages = {231 -- 243}, year = {2006}, abstract = {This paper discusses translocation features of the 20S proteasome in order to explain typical proteasome length distributions. We assume that the protein transport depends significantly on the fragment length with some optimal length which is transported most efficiently. By means of a simple one-channel model, we show that this hypothesis can explain both the one- and the three-peak length distributions found in experiments. A possible mechanism of such translocation is provided by so-called fluctuation-driven transport.}, language = {en} } @phdthesis{Korn2007, author = {Korn, Christian}, title = {Stochastic dynamics of cell adhesion in hydrodynamic flow}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-12997}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {In this thesis the interplay between hydrodynamic transport and specific adhesion is theoretically investigated. An important biological motivation for this work is the rolling adhesion of white blood cells experimentally investigated in flow chambers. There, specific adhesion is mediated by weak bonds between complementary molecular building blocks which are either located on the cell surface (receptors) or attached to the bottom plate of the flow chamber (ligands). The model system under consideration is a hard sphere covered with receptors moving above a planar ligand-bearing wall. The motion of the sphere is influenced by a simple shear flow, deterministic forces, and Brownian motion. An algorithm is given that allows to numerically simulate this motion as well as the formation and rupture of bonds between receptors and ligands. The presented algorithm spatially resolves receptors and ligands. This opens up the perspective to apply the results also to flow chamber experiments done with patterned substrates based on modern nanotechnological developments. In the first part the influence of flow rate, as well as of the number and geometry of receptors and ligands, on the probability for initial binding is studied. This is done by determining the mean time that elapses until the first encounter between a receptor and a ligand occurs. It turns out that besides the number of receptors, especially the height by which the receptors are elevated above the surface of the sphere plays an important role. These findings are in good agreement with observations of actual biological systems like white blood cells or malaria-infected red blood cells. Then, the influence of bonds which have formed between receptors and ligands, but easily rupture in response to force, on the motion of the sphere is studied. It is demonstrated that different states of motion-for example rolling-can be distinguished. The appearance of these states depending on important model parameters is then systematically investigated. Furthermore, it is shown by which bond property the ability of cells to stably roll in a large range of applied flow rates is increased. Finally, the model is applied to another biological process, the transport of spherical cargo particles by molecular motors. In analogy to the so far described systems molecular motors can be considered as bonds that are able to actively move. In this part of the thesis the mean distance the cargo particles are transported is determined.}, language = {en} }