@article{HoffmannHoelkerEccard2022, author = {Hoffmann, Julia and H{\"o}lker, Franz and Eccard, Jana}, title = {Welcome to the dark side}, series = {Frontiers in ecology and evolution}, volume = {9}, journal = {Frontiers in ecology and evolution}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-701X}, doi = {10.3389/fevo.2021.779825}, pages = {11}, year = {2022}, abstract = {Differences in natural light conditions caused by changes in moonlight are known to affect perceived predation risk in many nocturnal prey species. As artificial light at night (ALAN) is steadily increasing in space and intensity, it has the potential to change movement and foraging behavior of many species as it might increase perceived predation risk and mask natural light cycles. We investigated if partial nighttime illumination leads to changes in foraging behavior during the night and the subsequent day in a small mammal and whether these changes are related to animal personalities. We subjected bank voles to partial nighttime illumination in a foraging landscape under laboratory conditions and in large grassland enclosures under near natural conditions. We measured giving-up density of food in illuminated and dark artificial seed patches and video recorded the movement of animals. While animals reduced number of visits to illuminated seed patches at night, they increased visits to these patches at the following day compared to dark seed patches. Overall, bold individuals had lower giving-up densities than shy individuals but this difference increased at day in formerly illuminated seed patches. Small mammals thus showed carry-over effects on daytime foraging behavior due to ALAN, i.e., nocturnal illumination has the potential to affect intra- and interspecific interactions during both night and day with possible changes in personality structure within populations and altered predator-prey dynamics.}, language = {en} } @misc{HoffmannHoelkerEccard2022, author = {Hoffmann, Julia and H{\"o}lker, Franz and Eccard, Jana}, title = {Welcome to the Dark Side}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, issn = {1866-8372}, doi = {10.25932/publishup-54470}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-544702}, pages = {13}, year = {2022}, abstract = {Differences in natural light conditions caused by changes in moonlight are known to affect perceived predation risk in many nocturnal prey species. As artificial light at night (ALAN) is steadily increasing in space and intensity, it has the potential to change movement and foraging behavior of many species as it might increase perceived predation risk and mask natural light cycles. We investigated if partial nighttime illumination leads to changes in foraging behavior during the night and the subsequent day in a small mammal and whether these changes are related to animal personalities. We subjected bank voles to partial nighttime illumination in a foraging landscape under laboratory conditions and in large grassland enclosures under near natural conditions. We measured giving-up density of food in illuminated and dark artificial seed patches and video recorded the movement of animals. While animals reduced number of visits to illuminated seed patches at night, they increased visits to these patches at the following day compared to dark seed patches. Overall, bold individuals had lower giving-up densities than shy individuals but this difference increased at day in formerly illuminated seed patches. Small mammals thus showed carry-over effects on daytime foraging behavior due to ALAN, i.e., nocturnal illumination has the potential to affect intra- and interspecific interactions during both night and day with possible changes in personality structure within populations and altered predator-prey dynamics.}, language = {en} } @article{HoffmannHoelkerEccard2022, author = {Hoffmann, Julia and H{\"o}lker, Franz and Eccard, Jana}, title = {Welcome to the Dark Side}, series = {Frontiers in Ecology and Evolution}, volume = {9}, journal = {Frontiers in Ecology and Evolution}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-701X}, doi = {10.3389/fevo.2021.779825}, pages = {11}, year = {2022}, abstract = {Differences in natural light conditions caused by changes in moonlight are known to affect perceived predation risk in many nocturnal prey species. As artificial light at night (ALAN) is steadily increasing in space and intensity, it has the potential to change movement and foraging behavior of many species as it might increase perceived predation risk and mask natural light cycles. We investigated if partial nighttime illumination leads to changes in foraging behavior during the night and the subsequent day in a small mammal and whether these changes are related to animal personalities. We subjected bank voles to partial nighttime illumination in a foraging landscape under laboratory conditions and in large grassland enclosures under near natural conditions. We measured giving-up density of food in illuminated and dark artificial seed patches and video recorded the movement of animals. While animals reduced number of visits to illuminated seed patches at night, they increased visits to these patches at the following day compared to dark seed patches. Overall, bold individuals had lower giving-up densities than shy individuals but this difference increased at day in formerly illuminated seed patches. Small mammals thus showed carry-over effects on daytime foraging behavior due to ALAN, i.e., nocturnal illumination has the potential to affect intra- and interspecific interactions during both night and day with possible changes in personality structure within populations and altered predator-prey dynamics.}, language = {en} } @article{Martens2011, author = {Martens, D{\"o}rte}, title = {Well-being and acceptance - contradictory aims in forest management?}, series = {Eco.mont : journal on protected mountain areas research}, volume = {3}, journal = {Eco.mont : journal on protected mountain areas research}, number = {2}, publisher = {Austrian Academy of Sciences Press}, address = {Wien}, issn = {2073-106X}, pages = {63 -- 65}, year = {2011}, abstract = {Urban forests fulfil various functions, among them the restoration process and aesthetical needs of urban residents. This article reflects the attitudes towards different managed forests on the one hand and their influence on psychological well-being on the other. Results of empirical approaches from both fields show some inconsistency, suggesting that people have a more positive attitude towards wild forest areas, while the effect on well-being is more positive after a walk in tended forest areas. A discussion follows on the link between perception and the effect of urban forests. An outlook on necessary research reveals the need for longitudinal research. The article concludes by showing management implications.}, language = {en} } @misc{BoekerHermanussenScheffler2021, author = {Boeker, Sonja and Hermanussen, Michael and Scheffler, Christiane}, title = {Westernization of self-perception in modern affluent Indonesian school children}, series = {Human Biology and Public Health}, volume = {2021}, journal = {Human Biology and Public Health}, number = {1}, editor = {Scheffler, Christiane and Koziel, Slawomir and Hermanussen, Michael and Bogin, Barry}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2748-9957}, doi = {10.52905/hbph.v1.4}, pages = {1 -- 13}, year = {2021}, abstract = {Background Subjective Social Status is used as an important predictor for psychological and physiological findings, most commonly measured with the MacArthur Scale (Ladder Test). Previous studies have shown that this test fits better in Western cultures. The idea of a social ladder itself and ranking oneself "higher" or "lower" is a concept that accords to the Western thinking. Objectives We hypothesize that in a culture where only the elites have adapted to a Western lifestyle, the test results reflect a higher level of accuracy for this stratum. We also expect that self-perception differs per sex. Sample and Methods We implemented the Ladder Test in a study of Indonesian schoolchildren aged between 5 and 13 years (boys N = 369, girls N= 364) from non-private and private schools in Kupang in 2020. Results Our analysis showed that the Ladder Test results were according to the Western expectations only for the private school, as the Ladder Scores significantly decreased with age (LM: p = 0.04). The Ladder Test results are best explained by "Education Father" for the non-private school pupils (p = 0.01) and all boys (p = 0.04), by "School Grades" for the private school cohort (p = 0.06) and by "Household Score" for girls (p =0.09). Conclusion This finding indicates that the concept of ranking oneself "high" or "low" on a social ladder is strongly implicated with Western ideas. A ladder implies social movement by "climbing" up or down. According to that, reflection of self-perception is influenced by culture.}, language = {en} } @phdthesis{CamaraMattosMartins2011, author = {Camara Mattos Martins, Marina}, title = {What are the downstream targets of trehalose-6-phosphate signalling in plants?}, address = {Potsdam}, pages = {164 S.}, year = {2011}, language = {en} } @article{ChorusSpijkerman2020, author = {Chorus, Ingrid and Spijkerman, Elly}, title = {What Colin Reynolds could tell us about nutrient limitation, N:P ratios and eutrophication control}, series = {Hydrobiologia : acta hydrobiologica, hydrographica, limnologica et protistologica}, volume = {848}, journal = {Hydrobiologia : acta hydrobiologica, hydrographica, limnologica et protistologica}, number = {1}, publisher = {Springer Nature}, address = {Berlin}, issn = {0018-8158}, doi = {10.1007/s10750-020-04377-w}, pages = {95 -- 111}, year = {2020}, abstract = {Colin Reynolds exquisitely consolidated our understanding of driving forces shaping phytoplankton communities and those setting the upper limit to biomass yield, with limitation typically shifting from light in winter to phosphorus in spring. Nonetheless, co-limitation is frequently postulated from enhanced growth responses to enrichments with both N and P or from N:P ranging around the Redfield ratio, concluding a need to reduce both N and P in order to mitigate eutrophication. Here, we review the current understanding of limitation through N and P and of co-limitation. We conclude that Reynolds is still correct: (i) Liebig's law of the minimum holds and reducing P is sufficient, provided concentrations achieved are low enough; (ii) analyses of nutrient limitation need to exclude evidently non-limiting situations, i.e. where soluble P exceeds 3-10 mu g/l, dissolved N exceeds 100-130 mu g/l and total P and N support high biomass levels with self-shading causing light limitation; (iii) additionally decreasing N to limiting concentrations may be useful in specific situations (e.g. shallow waterbodies with high internal P and pronounced denitrification); (iv) management decisions require local, situation-specific assessments. The value of research on stoichiometry and co-limitation lies in promoting our understanding of phytoplankton ecophysiology and community ecology.}, language = {en} } @misc{ChorusSpijkerman2020, author = {Chorus, Ingrid and Spijkerman, Elly}, title = {What Colin Reynolds could tell us about nutrient limitation, N:P ratios and eutrophication control}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1866-8372}, doi = {10.25932/publishup-54197}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-541979}, pages = {19}, year = {2020}, abstract = {Colin Reynolds exquisitely consolidated our understanding of driving forces shaping phytoplankton communities and those setting the upper limit to biomass yield, with limitation typically shifting from light in winter to phosphorus in spring. Nonetheless, co-limitation is frequently postulated from enhanced growth responses to enrichments with both N and P or from N:P ranging around the Redfield ratio, concluding a need to reduce both N and P in order to mitigate eutrophication. Here, we review the current understanding of limitation through N and P and of co-limitation. We conclude that Reynolds is still correct: (i) Liebig's law of the minimum holds and reducing P is sufficient, provided concentrations achieved are low enough; (ii) analyses of nutrient limitation need to exclude evidently non-limiting situations, i.e. where soluble P exceeds 3-10 mu g/l, dissolved N exceeds 100-130 mu g/l and total P and N support high biomass levels with self-shading causing light limitation; (iii) additionally decreasing N to limiting concentrations may be useful in specific situations (e.g. shallow waterbodies with high internal P and pronounced denitrification); (iv) management decisions require local, situation-specific assessments. The value of research on stoichiometry and co-limitation lies in promoting our understanding of phytoplankton ecophysiology and community ecology.}, language = {en} } @article{SchefflerHermanussen2023, author = {Scheffler, Christiane and Hermanussen, Michael}, title = {What does stunting tell us?}, series = {Human biology and public health}, volume = {2022}, journal = {Human biology and public health}, number = {3}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2748-9957}, doi = {10.52905/hbph2022.3.36}, pages = {1 -- 15}, year = {2023}, abstract = {Stunting is commonly linked with undernutrition. Yet, already after World War I, German pediatricians questioned this link and stated that no association exists between nutrition and height. Recent analyses within different populations of Low- and middle-income countries with high rates of stunted children failed to support the assumption that stunted children have a low BMI and skinfold sickness as signs of severe caloric deficiency. So, stunting is not a synonym of malnutrition. Parental education level has a positive influence on body height in stunted populations, e.g., in India and in Indonesia. Socially disadvantaged children tend to be shorter and lighter than children from affluent families. Humans are social mammals; they regulate growth similar to other social mammals. Also in humans, body height is strongly associated with the position within the social hierarchy, reflecting the personal and group-specific social, economic, political, and emotional environment. These non-nutritional impact factors on growth are summarized by the concept of SEPE (Social-Economic-Political-Emotional) factors. SEPE reflects on prestige, dominance-subordination, social identity, and ego motivation of individuals and social groups.}, language = {en} } @article{LehmannScheffler2016, author = {Lehmann, Andreas and Scheffler, Christiane}, title = {What does the mean menarcheal age mean?An analysis of temporal pattern in variability in a historical swiss population from the 19th and 20th centuries}, series = {American journal of human biology : the official journal of the Human Biology Council}, volume = {28}, journal = {American journal of human biology : the official journal of the Human Biology Council}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1042-0533}, doi = {10.1002/ajhb.22854}, pages = {705 -- 713}, year = {2016}, abstract = {ObjectivesAge at menarche is one of the most important factors when observing growth and development. The aim of this study was to assess the temporal pattern in variability of menarcheal age for a historic Swiss population from the 19th and 20th centuries. ResultsMean menarcheal age declined from 17.34 years (n=358) around 1830 to 13.80 years (n=141) around 1950. Within-cohort variance decreased from 7.5 to 2.1 year(2). Skewness was negatively correlated with birth year (r=-0.58). ConclusionThis study provided evidence for a secular trend in various statistical parameters for age at menarche since the 19th century. Furthermore, the results of the analysis of temporal pattern in variability revealed that the secular trend in menarcheal age happened in two phases. Am. J. Hum. Biol. 28:705-713, 2016. (c) 2016 Wiley Periodicals, Inc.}, language = {en} }