@phdthesis{Ehrlich2019, author = {Ehrlich, Elias}, title = {On the role of trade-offs in predator-prey interactions}, doi = {10.25932/publishup-43063}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-430631}, school = {Universit{\"a}t Potsdam}, pages = {192}, year = {2019}, abstract = {Predation drives coexistence, evolution and population dynamics of species in food webs, and has strong impacts on related ecosystem functions (e.g. primary production). The effect of predation on these processes largely depends on the trade-offs between functional traits in the predator and prey community. Trade-offs between defence against predation and competitive ability, for example, allow for prey speciation and predator-mediated coexistence of prey species with different strategies (defended or competitive), which may stabilize the overall food web dynamics. While the importance of such trade-offs for coexistence is widely known, we lack an understanding and the empirical evidence of how the variety of differently shaped trade-offs at multiple trophic levels affect biodiversity, trait adaptation and biomass dynamics in food webs. Such mechanistic understanding is crucial for predictions and management decisions that aim to maintain biodiversity and the capability of communities to adapt to environmental change ensuring their persistence. In this dissertation, after a general introduction to predator-prey interactions and tradeoffs, I first focus on trade-offs in the prey between qualitatively different types of defence (e.g. camouflage or escape behaviour) and their costs. I show that these different types lead to different patterns of predator-mediated coexistence and population dynamics, by using a simple predator-prey model. In a second step, I elaborate quantitative aspects of trade-offs and demonstrates that the shape of the trade-off curve in combination with trait-fitness relationships strongly affects competition among different prey types: Either specialized species with extreme trait combinations (undefended or completely defended) coexist, or a species with an intermediate defence level dominates. The developed theory on trade-off shapes and coexistence is kept general, allowing for applications apart from defence-competitiveness trade-offs. Thirdly, I tested the theory on trade-off shapes on a long-term field data set of phytoplankton from Lake Constance. The measured concave trade-off between defence and growth governs seasonal trait changes of phytoplankton in response to an altering grazing pressure by zooplankton, and affects the maintenance of trait variation in the community. In a fourth step, I analyse the interplay of different tradeoffs at multiple trophic levels with plankton data of Lake Constance and a corresponding tritrophic food web model. The results show that the trait and biomass dynamics of the different three trophic levels are interrelated in a trophic biomass-trait cascade, leading to unintuitive patterns of trait changes that are reversed in comparison to predictions from bitrophic systems. Finally, in the general discussion, I extract main ideas on trade-offs in multitrophic systems, develop a graphical theory on trade-off-based coexistence, discuss the interplay of intra- and interspecific trade-offs, and end with a management-oriented view on the results of the dissertation, describing how food webs may respond to future global changes, given their trade-offs.}, language = {en} }