@article{MayerUllmannHeinrichetal.2019, author = {Mayer, Martin and Ullmann, Wiebke and Heinrich, Rebecca and Fischer, Christina and Blaum, Niels and Sunde, Peter}, title = {Seasonal effects of habitat structure and weather on the habitat selection and home range size of a mammal in agricultural landscapes}, series = {Landscape ecology}, volume = {34}, journal = {Landscape ecology}, number = {10}, publisher = {Springer}, address = {Dordrecht}, issn = {0921-2973}, doi = {10.1007/s10980-019-00878-9}, pages = {2279 -- 2294}, year = {2019}, abstract = {Context Human land use intensified over the last century and simultaneously, extreme weather events have become more frequent. However, little is known about the interplay between habitat structure, direct short-term weather effects and indirect seasonal effects on animal space use and behavior. Objectives We used the European hare (Lepus europaeus) as model to investigate how habitat structure and weather conditions affect habitat selection and home range size, predictors for habitat quality and energetic requirements. Methods Using > 100,000 GPS positions of 60 hares in three areas in Denmark and Germany, we analyzed habitat selection and home range size in response to seasonally changing habitat structure, measured as vegetation height and agricultural field size, and weather. We compared daily and monthly home ranges to disentangle between direct short-term weather effects and indirect seasonal effects of climate. Results Habitat selection and home range size varied seasonally as a response to changing habitat structure, potentially affecting the availability of food and shelter. Overall, habitat structure and seasonality were more important in explaining hare habitat selection and home range size compared to direct weather conditions. Nevertheless, hares adjusted habitat selection and daily home range size in response to temperature, wind speed and humidity, possibly in response to thermal constrains and predation risk. Conclusions For effective conservation, habitat heterogeneity should be increased, e.g. by reducing agricultural field sizes and the implementation of set-asides that provide both forage and shelter, especially during the colder months of the year.}, language = {en} }