@article{SchildgenRobinsonSavietal.2016, author = {Schildgen, Taylor F. and Robinson, Ruth A. J. and Savi, Sara and Phillips, William M. and Spencer, Joel Q. G. and Bookhagen, Bodo and Scherler, Dirk and Tofelde, Stefanie and Alonso, Ricardo N. and Kubik, Peter W. and Binnie, Steven A. and Strecker, Manfred}, title = {Landscape response to late Pleistocene climate change in NW Argentina: Sediment flux modulated by basin geometry and connectivity}, series = {Journal of geophysical research : Earth surface}, volume = {121}, journal = {Journal of geophysical research : Earth surface}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9003}, doi = {10.1002/2015JF003607}, pages = {392 -- 414}, year = {2016}, abstract = {Fluvial fill terraces preserve sedimentary archives of landscape responses to climate change, typically over millennial timescales. In the Humahuaca Basin of NW Argentina (Eastern Cordillera, southern Central Andes), our 29 new optically stimulated luminescence ages of late Pleistocene fill terrace sediments demonstrate that the timing of past river aggradation occurred over different intervals on the western and eastern sides of the valley, despite their similar bedrock lithology, mean slopes, and precipitation. In the west, aggradation coincided with periods of increasing precipitation, while in the east, aggradation coincided with decreasing precipitation or more variable conditions. Erosion rates and grain size dependencies in our cosmogenic Be-10 analyses of modern and fill terrace sediments reveal an increased importance of landsliding compared to today on the west side during aggradation, but of similar importance during aggradation on the east side. Differences in the timing of aggradation and the Be-10 data likely result from differences in valley geometry, which causes sediment to be temporarily stored in perched basins on the east side. It appears as if periods of increasing precipitation triggered landslides throughout the region, which induced aggradation in the west, but blockage of the narrow bedrock gorges downstream from the perched basins in the east. As such, basin geometry and fluvial connectivity appear to strongly influence the timing of sediment movement through the system. For larger basins that integrate subbasins with differing geometries or degrees of connectivity (like Humahuaca), sedimentary responses to climate forcing are likely attenuated.}, language = {en} } @article{SaviSchildgenTofeldeetal.2016, author = {Savi, Sara and Schildgen, Taylor F. and Tofelde, Stefanie and Wittmann, Hella and Scherler, Dirk and Mey, J{\"u}rgen and Alonso, Ricardo N. and Strecker, Manfred}, title = {Climatic controls on debris-flow activity and sediment aggradation: The Del Medio fan, NW Argentina}, series = {Journal of geophysical research : Earth surface}, volume = {121}, journal = {Journal of geophysical research : Earth surface}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9003}, doi = {10.1002/2016JF003912}, pages = {2424 -- 2445}, year = {2016}, abstract = {In the Central Andes, several studies on alluvial terraces and valley fills have linked sediment aggradation to periods of enhanced sediment supply. However, debate continues over whether tectonic or climatic factors are most important in triggering the enhanced supply. The Del Medio catchment in the Humahuaca Basin (Eastern Cordillera, NW Argentina) is located within a transition zone between subhumid and arid climates and hosts the only active debris-flow fan within this intermontane valley. By combining Be-10 analyses of boulder and sediment samples within the Del Medio catchment, with regional morphometric measurements of nearby catchments, we identify the surface processes responsible for aggradation in the Del Medio fan and their likely triggers. We find that the fan surface has been shaped by debris flows and channel avulsions during the last 400 years. Among potential tectonic, climatic, and autogenic factors that might influence deposition, our analyses point to a combination of several favorable factors that drive aggradation. These are in particular the impact of occasional abundant rainfall on steep slopes in rock types prone to failure, located in a region characterized by relatively low rainfall amounts and limited transport capacity. These characteristics are primarily associated with the climatic transition zone between the humid foreland and the arid orogen interior, which creates an imbalance between sediment supply and sediment transfer. The conditions and processes that drive aggradation in the Del Medio catchment today may provide a modern analog for the conditions and processes that drove aggradation in other nearby tributaries in the past.}, language = {en} } @article{RohrmannSachseMulchetal.2016, author = {Rohrmann, Alexander and Sachse, Dirk and Mulch, Andreas and Pingel, Heiko and Tofelde, Stefanie and Alonso, Ricardo N. and Strecker, Manfred}, title = {Miocene orographic uplift forces rapid hydrological change in the southern central Andes}, series = {Scientific reports}, volume = {6}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/srep35678}, pages = {4283 -- 4306}, year = {2016}, abstract = {Rainfall in the central Andes associated with the South American Monsoon and the South American Low-Level Jet results from orographic effects on atmospheric circulation exerted by the Andean Plateau and the Eastern Cordillera. However, despite its importance for South American climate, no reliable records exist that allow decoding the evolution of thresholds and interactions between Andean topography and atmospheric circulation, especially regarding the onset of humid conditions in the inherently dry southern central Andes. Here, we employ multi-proxy isotope data of lipid biomarkers, pedogenic carbonates and volcanic glass from the Eastern Cordillera of NW Argentina and present the first long-term evapotranspiration record. We find that regional eco-hydrology and vegetation changes are associated with initiation of moisture transport via the South American Low-Level Jet at 7.6 Ma, and subsequent lateral growth of the orogen at 6.5 Ma. Our results highlight that topographically induced changes in atmospheric circulation patterns, not global climate change, were responsible for late Miocene environmental change in this part of the southern hemisphere. This suggests that mountain building over time fundamentally controlled habitat evolution along the central Andes.}, language = {en} } @article{RadaeffCosentinoCipollarietal.2016, author = {Radaeff, Giuditta and Cosentino, Domenico and Cipollari, Paola and Schildgen, Taylor F. and Iadanza, Annalisa and Strecker, Manfred and Darbas, Guldemin and G{\"u}rb{\"u}z, Kemal}, title = {Stratigraphic architecture of the upper Messinian deposits of the Adana Basin (southern Turkey): implications for the Messinian Salinity Crisis and the Taurus petroleum system}, series = {Italian journal of geosciences : bollettino della Societ{\~A}  Geologica Italiana e del Servizio Geologico d'Italia}, volume = {135}, journal = {Italian journal of geosciences : bollettino della Societ{\~A}  Geologica Italiana e del Servizio Geologico d'Italia}, publisher = {Societ{\~A}  Geologica Italiana}, address = {Roma}, issn = {2038-1719}, doi = {10.3301/IJG.2015.18}, pages = {408 -- 424}, year = {2016}, abstract = {This paper is mainly based on field work carried out on the Messinian deposits of the Adana Basin ( southern Turkey), as well as on the interpretation of seismic reflection profiles to understand 3D geometries of the basin fill. Chronostratigraphic constraints for the Messinian deposits are from micropaleontological studies on foraminifera, ostracods, and calcareous nannofossils, recently carried out on the Messinian deposits of the Adana Basin. Our results indicate that this basin developed in a marginal area strictly related to the Mediterranean realm. The Messinian deposits of the Adana Basin record all the main steps of the Messinian Salinity Crisis ( MSC) that affected the Mediterranean area at the end of the Miocene. The new stratigraphic model for the Messinian deposits of the Adana Basin provided in this work gives new insights into both the MSC and the Taurus petroleum system. Despite their complete correspondence with the MSC, the Messinian deposits of the Adana Basin show some differences with respect to the current conceptual model for the MSC. For example, in the current conceptual model for the MSC, only one regional erosional surface ( MES) characterizes the MSC deposits. In the Adana Basin, two regional erosional surfaces, named MES1 and MES2, separate the Messinian deposits related to the MSC in Lower Evaporites, Resedimented Lower Evaporites ( RLE), and upper Messinian continental deposits containing a late Lago-Mare ostracod assemblage ( mainly fluvial coarse-grained and fine-grained sediments). In some places, Brecciated Limestones lie just above the MES1 and beneath the RLE. In addition, the RLE are thought to be related to the same step that brought to the Messinian halite deposition throughout the Mediterranean, pointing to a hyperhaline environment. In contrast, the fine-grained deposits of the RLE of the Adana Basin show the occurrence of Parathetyan brackish ostracod fauna ( early Lago-Mare ostracod assemblages), which defines an oligohaline depositional environment for the RLE. In terms of hydrocarbon prospecting, the Messinian evaporites of the Adana Basin have been considered as a perfect seal for the active Taurus petroleum system. Our results show that due to the complex stratigraphic architecture of the basin fill and the occurrence of two regional erosional surfaces ( MES1 and MES2), the Messinian evaporites are discontinuously present both in surface and in the subsurface of the Adana Basin. However, seal properties in the Adana Basin could be found in the Lower Pliocene deep marine clays of the Avadan Formation. This work leads to suggest a new stratigraphical model for the Messinian deposits of the Adana Basin, allowing us to amend the classical scheme with respect to the Messinian, and to officially define some new formations within the stratigraphy of the Adana Basin.}, language = {en} } @article{PingelMulchAlonsoetal.2016, author = {Pingel, Heiko and Mulch, Andreas and Alonso, Ricardo N. and Cottle, John and Hynek, Scott A. and Poletti, Jacob and Rohrmann, Alexander and Schmitt, Axel K. and Stockli, Daniel F. and Strecker, Manfred}, title = {Surface uplift and convective rainfall along the southern Central Andes (Angastaco Basin, NW Argentina)}, series = {Earth \& planetary science letters}, volume = {440}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2016.02.009}, pages = {33 -- 42}, year = {2016}, abstract = {Stable-isotopic and sedimentary records from the orogenic Puna Plateau of NW Argentina and adjacent intermontane basins to the east furnish a unique late Cenozoic record of range uplift and ensuing paleoenvironmental change in the south-central Andes. Today, focused precipitation in this region occurs along the eastern, windward flanks of the Eastern Cordillera and Sierras Pampeanas ranges, while the orogen interior constitutes high-elevation regions with increasingly arid conditions in a westward direction. As in many mountain belts, such hydrologic and topographic gradients are commonly mirrored by a systematic relationship between the oxygen and hydrogen stable isotope ratios of meteoric water and elevation. The glass fraction of isotopically datable volcanic ash intercalated in sedimentary sequences constitutes an environmental proxy that retains a signal of the hydrogen-isotopic composition of ancient precipitation. This isotopic composition thus helps to elucidate the combined climatic and tectonic processes associated with topographic growth, which ultimately controls the spatial patterns of precipitation in mountain belts. However, between 25.5 and 27 degrees S present-day river-based hydrogen isotope lapse rates are very low, possibly due to deep-convective seasonal storms that dominate runoff. If not accounted for, the effects of such conditions on moisture availability in the past may lead to misinterpretations of proxy-records of rainfall. Here, we present hydrogen-isotope data of volcanic glass (delta Dg), extracted from 34 volcanic ash layers in different sedimentary basins of the Eastern Cordillera and the Sierras Pampeanas. Combined with previously published delta Dg records and our refined U-Pb and (U-Th)/He zircon geochronology on 17 tuff samples, we demonstrate hydrogen-isotope variations associated with paleoenvironmental change in the Angastaco Basin, which evolved from a contiguous foreland to a fault-bounded intermontane basin during the late Mio-Pliocene. We unravel the environmental impact of Mio-Pliocene topographic growth and associated orographic effects on long-term hydrogen-isotope records of rainfall in the south-central Andes, and potentially identify temporal variations in regional isotopic lapse rates that may also apply to other regions with similar topographic boundary conditions. (C) 2016 Elsevier B.V. All rights reserved.}, language = {en} } @article{OlenBookhagenStrecker2016, author = {Olen, Stephanie M. and Bookhagen, Bodo and Strecker, Manfred}, title = {Role of climate and vegetation density in modulating denudation rates in the Himalaya}, series = {Earth \& planetary science letters}, volume = {445}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2016.03.047}, pages = {57 -- 67}, year = {2016}, abstract = {Vegetation has long been hypothesized to influence the nature and rates of surface processes. We test the possible impact of vegetation and climate on denudation rates at orogen scale by taking advantage of a pronounced along-strike gradient in rainfall and vegetation density in the Himalaya. We combine 12 new Be-10 denudation rates from the Sutlej Valley and 123 published denudation rates from fluvially-dominated catchments in the Himalaya with remotely-sensed measures of vegetation density and rainfall metrics, and with tectonic and lithologic constraints. In addition, we perform topographic analyses to assess the contribution of vegetation and climate in modulating denudation rates along strike. We observe variations in denudation rates and the relationship between denudation and topography along strike that are most strongly controlled by local rainfall amount and vegetation density, and cannot be explained by along-strike differences in tectonics or lithology. A W-E along-strike decrease in denudation rate variability positively correlates with the seasonality of vegetation density (R = 0.95, p < 0.05), and negatively correlates with mean vegetation density (R = -0.84, p < 0.05). Vegetation density modulates the topographic response to changing denudation rates, such that the functional relationship between denudation rate and topographic steepness becomes increasingly linear as vegetation density increases. We suggest that while tectonic processes locally control the pattern of denudation rates across strike of the Himalaya (i.e., S-N), along strike of the orogen (i.e., E-W) climate exerts a measurable influence on how denudation rates scatter around long-term, tectonically-controlled erosion, and on the functional relationship between topography and denudation. (C) 2016 Elsevier B.V. All rights reserved.}, language = {en} } @article{NietoMorenoRohrmannvanderMeeretal.2016, author = {Nieto-Moreno, Vanesa and Rohrmann, Alexander and van der Meer, Marcel T. J. and Damste, Jaap S. Sinninghe and Sachse, Dirk and Tofelde, Stefanie and Niedermeyer, Eva M. and Strecker, Manfred and Mulch, Andreas}, title = {Elevation-dependent changes in n-alkane delta D and soil GDGTs across the South Central Andes}, series = {Earth \& planetary science letters}, volume = {453}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2016.07.049}, pages = {234 -- 242}, year = {2016}, abstract = {Surface uplift of large plateaus may significantly influence regional climate and more specifically precipitation patterns and temperature, sometimes complicating paleoaltimetry interpretations. Thus, understanding the topographic evolution of tectonically active mountain belts benefits from continued development of reliable proxies to reduce uncertainties in paleoaltimetry reconstructions. Lipid biomarker-based proxies provide a novel approach to stable isotope paleoaltimetry and complement authigenic or pedogenic mineral proxy materials, in particular outside semi-arid climate zones where soil carbonates are not abundant but (soil) organic matter has a high preservation potential. Here we present delta D values of soil-derived n-alkanes and mean annual air temperature (MAT) estimates based on branched glycerol dialkyl glycerol tetraether (brGDGT) distributions to assess their potential for paleoelevation reconstructions in the southern central Andes. We analyzed soil samples across two environmental and hydrological gradients that include a hillslope (26-28 degrees S) and a valley (22-24 degrees S) transect on the windward flanks of Central Andean Eastern Cordillera in NW Argentina. Our results show that present-day n-alkane delta D values and brGDGT-based MAT estimates are both linearly related with elevation and in good agreement with present-day climate conditions. Soil n-alkanes show a delta D lapse rate (A(delta D)) of -1.64 parts per thousand/100 m (R-2 = 0.91, p < 0.01) at the hillslope transect, within the range of delta D lapse rates from precipitation and surface waters in other tropical regions in the Andes like the Eastern Cordillera in Colombia and Bolivia and the Equatorial and Peruvian Andes. BrGDGT-derived soil temperatures are similar to monitored winter temperatures in the region and show a lapse rate of Delta T = -0.51 degrees C/100 m (R-2 = 0.91, p < 0.01), comparable with lapse rates from in situ soil temperature measurements, satellite derived land-surface temperatures at this transect, and weather stations from the Eastern Cordillera at similar latitude. As a result of an increasing leeward sampling position along the valley transect lapse rates are biased towards lower values and display higher scatter (Delta(delta D) = -0.9 parts per thousand/100 m, R-2 = 0.76, p < 0.01 and Delta T = -0.19 degrees C/100 m, R-2 = 0.48, p < 0.05). Despite this higher complexity, they are in line with lapse rates from stream-water samples and in situ soil temperature measurements along the same transect. Our results demonstrate that both soil n-alkane delta D values and MAT reconstructions based on brGDGTs distributions from the hillslope transect (Delta(delta D) = -1.64 parts per thousand/100 m, R-2 = 0.91, p < 0.01 and Delta T = -0.51 degrees C/100 m, R-2 = 0.91, p < 0.01) track the direct effects of orography on precipitation and temperature and hence the combined effects of local and regional hydrology as well as elevation. (C) 2016 Elsevier B.V. All rights reserved.}, language = {en} } @article{MortimerKirsteinStuartetal.2016, author = {Mortimer, Estelle and Kirstein, Linda A. and Stuart, Finlay M. and Strecker, Manfred}, title = {Spatio-temporal trends in normal-fault segmentation recorded by low-temperature thermochronology: Livingstone fault scarp, Malawi Rift, East African Rift System}, series = {Earth \& planetary science letters}, volume = {455}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2016.08.040}, pages = {62 -- 72}, year = {2016}, abstract = {The evolution of through-going normal-fault arrays from initial nucleation to growth and subsequent interaction and mechanical linkage is well documented in many extensional provinces. Over time, these processes. lead to predictable spatial and temporal variations in the amount and rate of displacement accumulated along strike of individual fault segments, which should be manifested in the patterns of footwall exhumation. Here, we investigate the along-strike and vertical distribution of low-temperature apatite (U-Th)/He (AHe) cooling ages along the bounding fault system, the Livingstone fault, of the Karonga Basin of the northern Malawi Rift. The fault evolution and linkage from rift initiation to the present day has been previously constrained through investigations of the hanging wall basin fill. The new cooling ages from the footwall of the Livingstone fault can be related to the adjacent depocentre evolution and across a relay zone between two palaeo-fault segments. Our data are complimented by published apatite fission track (AFT) data and reveal significant variation in rock cooling history along-strike: the centre of the footwall yields younger cooling ages than the former tips of earlier fault segments that are now linked. This suggests that low-temperature thermochronology can detect fault interactions along strike. That these former segment boundaries are preserved within exhumed footwall rocks is a function of the relatively recent linkage of the system. Our study highlights that changes in AHe (and potentially AFT) ages associated with the along-strike displacement profile can occur over relatively short horizontal distances (of a few kilometres). This is fundamentally important in the assessment of the vertical cooling history of footwalls in extensional systems: temporal differences in the rate of tectonically driven exhumation at a given location along fault strike may be of greater importance in controlling changes in rates of vertical exhumation than commonly invoked climatic fluctuations. (C) 2016 Elsevier B.V. All rights reserved.}, language = {en} } @article{MortimerPatonScholzetal.2016, author = {Mortimer, E. J. and Paton, D. A. and Scholz, C. A. and Strecker, Manfred}, title = {Implications of structural inheritance in oblique rift zones for basin compartmentalization: Nkhata Basin, Malawi Rift (EARS)}, series = {Marine and petroleum geology}, volume = {72}, journal = {Marine and petroleum geology}, publisher = {Elsevier}, address = {Oxford}, issn = {0264-8172}, doi = {10.1016/j.marpetgeo.2015.12.018}, pages = {110 -- 121}, year = {2016}, abstract = {The Cenozoic East African Rift System (EARS) is an exceptional example of active continental extension, providing opportunities for furthering our understanding of hydrocarbon plays within rifts. It is divided into structurally distinct western and eastern branches. The western branch comprises deep rift basins separated by transfer zones, commonly localised onto pre-existing structures, offering good regional scale hydrocarbon traps. At a basin-scale, local discrete inherited structures might also play an important role on fault localisation and hydrocarbon distribution. Here, we consider the evolution of the Central basin of the Malawi Rift, in particular the influence of pre-existing structural fabrics. Integrating basin-scale multichannel 2D, and high resolution seismic datasets we constrain the border, Mlowe-Nkhata, fault system (MNF) to the west of the basin and smaller Mbamba fault (MF) to the east and document their evolution. Intra basin structures define a series of horsts, which initiated as convergent transfers, along the basin axis. The horsts are offset along a NE SW striking transfer fault parallel to and along strike of the onshore Karoo (Permo-Triassic) Ruhuhu graben. Discrete pre-existing structures probably determined its location and, oriented obliquely to the extension orientation it accommodated predominantly strike-slip deformation, with more slowly accrued dip-slip. To the north of this transfer fault, the overall basin architecture is asymmetric, thickening to the west throughout; while to the south, an initially symmetric graben architecture became increasingly asymmetric in sediment distribution as strain localised onto the western MNF. The presence of the axial horst increasingly focussed sediment supply to the west. As the transfer fault increased its displacement, so this axial supply was interrupted, effectively starving the south-east while ponding sediments between the western horst margin and the transfer fault. This asymmetric bathymetry and partitioned sedimentation continues to the present-day, overprinting the early basin symmetry and configuration. Sediments deposited earlier become increasingly dissected and fault juxtapositions changed at a small (10-100 m) scale. The observed influence of basin-scale transfer faults on sediment dispersal and fault compartmentalization due to pre-existing structures oblique to the extension orientation is relevant to analogous exploration settings. (C) 2016 Elsevier Ltd. All rights reserved.}, language = {en} } @article{MeyScherlerWickertetal.2016, author = {Mey, J{\"u}rgen and Scherler, Dirk and Wickert, Andrew D. and Egholm, David L. and Tesauro, Magdala and Schildgen, Taylor F. and Strecker, Manfred}, title = {Glacial isostatic uplift of the European Alps}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/ncomms13382}, pages = {2357 -- 2371}, year = {2016}, language = {en} }