@misc{KleineVehnSauer2017, author = {Kleine-Vehn, J{\"u}rgen and Sauer, Michael}, title = {Preface}, series = {Plant Hormones: Methods and Protocols}, volume = {1497}, journal = {Plant Hormones: Methods and Protocols}, editor = {Kleine-Vehn, J{\"u}rgen and Sauer, Michael}, edition = {3}, publisher = {Springer}, address = {New York}, isbn = {978-1-4939-6469-7}, issn = {1064-3745}, doi = {10.1007/978-1-4939-6469-7}, pages = {V -- V}, year = {2017}, language = {en} } @article{KirchnerCaiRauscheretal.2017, author = {Kirchner, Sebastian and Cai, Zhiwei and Rauscher, Robert and Kastelic, Nicolai and Anding, Melanie and Czech, Andreas and Kleizen, Bertrand and Ostedgaard, Lynda S. and Braakman, Ineke and Sheppard, David N. and Ignatova, Zoya}, title = {Alteration of protein function by a silent polymorphism linked to tRNA abundance}, series = {PLoS biology}, volume = {15}, journal = {PLoS biology}, publisher = {PLoS}, address = {San Fransisco}, issn = {1545-7885}, doi = {10.1371/journal.pbio.2000779}, pages = {29}, year = {2017}, abstract = {Synonymous single nucleotide polymorphisms (sSNPs) are considered neutral for protein function, as by definition they exchange only codons, not amino acids. We identified an sSNP that modifies the local translation speed of the cystic fibrosis transmembrane conductance regulator (CFTR), leading to detrimental changes to protein stability and function. This sSNP introduces a codon pairing to a low-abundance tRNA that is particularly rare in human bronchial epithelia, but not in other human tissues, suggesting tissue-specific effects of this sSNP. Up-regulation of the tRNA cognate to the mutated codon counteracts the effects of the sSNP and rescues protein conformation and function. Our results highlight the wide-ranging impact of sSNPs, which invert the programmed local speed of mRNA translation and provide direct evidence for the central role of cellular tRNA levels in mediating the actions of sSNPs in a tissue-specific manner.}, language = {en} } @article{KettnerRojasJimenezOberbeckmannetal.2017, author = {Kettner, Marie Therese and Rojas-Jimenez, Keilor and Oberbeckmann, Sonja and Labrenz, Matthias and Grossart, Hans-Peter}, title = {Microplastics alter composition of fungal communities in aquatic ecosystems}, series = {Environmental microbiology}, volume = {19}, journal = {Environmental microbiology}, publisher = {Wiley}, address = {Hoboken}, issn = {1462-2912}, doi = {10.1111/1462-2920.13891}, pages = {4447 -- 4459}, year = {2017}, abstract = {Despite increasing concerns about microplastic (MP) pollution in aquatic ecosystems, there is insufficient knowledge on how MP affect fungal communities. In this study, we explored the diversity and community composition of fungi attached to polyethylene (PE) and polystyrene (PS) particles incubated in different aquatic systems in north-east Germany: the Baltic Sea, the River Warnow and a wastewater treatment plant. Based on next generation 18S rRNA gene sequencing, 347 different operational taxonomic units assigned to 81 fungal taxa were identified on PE and PS. The MP-associated communities were distinct from fungal communities in the surrounding water and on the natural substrate wood. They also differed significantly among sampling locations, pointing towards a substrate and location specific fungal colonization. Members of Chytridiomycota, Cryptomycota and Ascomycota dominated the fungal assemblages, suggesting that both parasitic and saprophytic fungi thrive in MP biofilms. Thus, considering the worldwide increasing accumulation of plastic particles as well as the substantial vector potential of MP, especially these fungal taxa might benefit from MP pollution in the aquatic environment with yet unknown impacts on their worldwide distribution, as well as biodiversity and food web dynamics at large.}, language = {en} } @phdthesis{Kersting2017, author = {Kersting, Sebastian}, title = {Isothermal nucleic acid amplification for the detection of infectious pathogens}, pages = {215}, year = {2017}, language = {en} } @article{KehlmaierBarlowHastingsetal.2017, author = {Kehlmaier, Christian and Barlow, Axel and Hastings, Alexander K. and Vamberger, Melita and Paijmans, Johanna L. A. and Steadman, David W. and Albury, Nancy A. and Franz, Richard and Hofreiter, Michael and Fritz, Uwe}, title = {Tropical ancient DNA reveals relationships of the extinct bahamian giant tortoise Chelonoidis alburyorum}, series = {Proceedings of the Royal Society of London : Series B, Biological sciences}, volume = {284}, journal = {Proceedings of the Royal Society of London : Series B, Biological sciences}, publisher = {The Royal Society}, address = {London}, issn = {0962-8452}, doi = {10.1098/rspb.2016.2235}, pages = {8}, year = {2017}, abstract = {Ancient DNA of extinct species from the Pleistocene and Holocene has provided valuable evolutionary insights. However, these are largely restricted to mammals and high latitudes because DNA preservation in warm climates is typically poor. In the tropics and subtropics, non-avian reptiles constitute a significant part of the fauna and little is known about the genetics of the many extinct reptiles from tropical islands. We have reconstructed the near-complete mitochondrial genome of an extinct giant tortoise from the Bahamas (Chelonoidis alburyorum) using an approximately 1000-year-old humerus from a water-filled sinkhole (blue hole) on Great Abaco Island. Phylogenetic and molecular clock analyses place this extinct species as closely related to Galapagos (C. niger complex) and Chaco tortoises (C. chilensis), and provide evidence for repeated overseas dispersal in this tortoise group. The ancestors of extant Chelonoidis species arrived in South America from Africa only after the opening of the Atlantic Ocean and dispersed from there to the Caribbean and the Galapagos Islands. Our results also suggest that the anoxic, thermally buffered environment of blue holes may enhance DNA preservation, and thus are opening a window for better understanding evolution and population history of extinct tropical species, which would likely still exist without human impact.}, language = {en} } @misc{KappelCuongNguyenHuuLenhard2017, author = {Kappel, Christian and Cuong Nguyen Huu, and Lenhard, Michael}, title = {A short story gets longer: recent insights into the molecular basis of heterostyly}, series = {Journal of experimental botany}, volume = {68}, journal = {Journal of experimental botany}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0022-0957}, doi = {10.1093/jxb/erx387}, pages = {5719 -- 5730}, year = {2017}, abstract = {Heterostyly is a fascinating adaptation to promote outbreeding and a classical paradigm of botany. In the most common type of heterostyly, plants either form flowers with long styles and short stamens, or short styles and long stamens. This reciprocal organ positioning reduces pollen wastage and promotes cross-pollination, thus increasing male fitness. In addition, in many heterostylous species selfing and the generation of unfit progeny due to inbreeding depression is limited by a self-incompatibility system, thus promoting female fitness. The two floral forms are genetically determined by the S locus as a complex supergene, namely a chromosomal region containing several individual genes that control the different traits, such as style or stamen length, and are held together by very tight linkage due to suppressed recombination. Recent molecular-genetic studies in several systems, including Turnera, Fagopyrum, Linum, and Primula have begun to identify and characterize the causal heterostyly genes residing at the S locus. An emerging theme from several families is that the dominant S haplotype represents a hemizygous region not present on the recessive s haplotype. This provides an explanation for the suppressed recombination and suggests a scenario for the chromosomal evolution of the S locus. In this review, we discuss the results from recent molecular-genetic analyses in light of the classical models on the genetics and evolution of heterostyly.}, language = {en} } @misc{KalinkatCabralDarwalletal.2017, author = {Kalinkat, Gregor and Cabral, Juliano Sarmento and Darwall, William and Ficetola, G. Francesco and Fisher, Judith L. and Giling, Darren P. and Gosselin, Marie-Pierre and Grossart, Hans-Peter and Jaehnig, Sonja C. and Jeschke, Jonathan M. and Knopf, Klaus and Larsen, Stefano and Onandia, Gabriela and Paetzig, Marlene and Saul, Wolf-Christian and Singer, Gabriel and Sperfeld, Erik and Jaric, Ivan}, title = {Flagship umbrella species needed for the conservation of overlooked aquatic biodiversity}, series = {Conservation biology : the journal of the Society for Conservation Biology}, volume = {31}, journal = {Conservation biology : the journal of the Society for Conservation Biology}, publisher = {Wiley}, address = {Hoboken}, issn = {0888-8892}, doi = {10.1111/cobi.12813}, pages = {481 -- 485}, year = {2017}, language = {en} } @article{JueppnerMubeenLeisseetal.2017, author = {J{\"u}ppner, Jessica and Mubeen, Umarah and Leisse, Andrea and Caldana, Camila and Brust, Henrike and Steup, Martin and Herrmann, Marion and Steinhauser, Dirk and Giavalisco, Patrick}, title = {Dynamics of lipids and metabolites during the cell cycle of Chlamydomonas reinhardtii}, series = {The plant journal}, volume = {92}, journal = {The plant journal}, publisher = {Wiley}, address = {Hoboken}, issn = {0960-7412}, doi = {10.1111/tpj.13642}, pages = {331 -- 343}, year = {2017}, abstract = {Metabolites and lipids are the final products of enzymatic processes, distinguishing the different cellular functions and activities of single cells or whole tissues. Understanding these cellular functions within a well-established model system requires a systemic collection of molecular and physiological information. In the current report, the green alga Chlamydomonas reinhardtii was selected to establish a comprehensive workflow for the detailed multi-omics analysis of a synchronously growing cell culture system. After implementation and benchmarking of the synchronous cell culture, a two-phase extraction method was adopted for the analysis of proteins, lipids, metabolites and starch from a single sample aliquot of as little as 10-15million Chlamydomonas cells. In a proof of concept study, primary metabolites and lipids were sampled throughout the diurnal cell cycle. The results of these time-resolved measurements showed that single compounds were not only coordinated with each other in different pathways, but that these complex metabolic signatures have the potential to be used as biomarkers of various cellular processes. Taken together, the developed workflow, including the synchronized growth of the photoautotrophic cell culture, in combination with comprehensive extraction methods and detailed metabolic phenotyping has the potential for use in in-depth analysis of complex cellular processes, providing essential information for the understanding of complex biological systems.}, language = {en} } @phdthesis{Janowski2017, author = {Janowski, Marcin Andrzej}, title = {Investigating role of the essential GTPase - AtRsgA in the assembly of the small ribosomal subunit in Arabidopsis thaliana chloroplast}, school = {Universit{\"a}t Potsdam}, pages = {114}, year = {2017}, language = {en} } @phdthesis{Janowski2017, author = {Janowski, Marcin Andrzej}, title = {Investigating role of the essential GTPase - AtRsgA in the assembly of the small ribosomal subunit in Arabidopsis thaliana chloroplast}, school = {Universit{\"a}t Potsdam}, pages = {X, 114}, year = {2017}, abstract = {Plastid protein biosynthesis occurs on bacterial-type 70S ribosomes consisting of a large (50S) and a small (30S) subunit. However, since many steps of ribosome biogenesis are not thermodynamically favorable at biological conditions, it requires many assembly factors. One group of assembly factors, circularly permuted GTPases, was implicated in 30S subunit maturation in E. coli, by a protein RsgA. RsgA orthologues are present in bacteria and plastid-containing species and in silico analysis revealed presence of a RsgA-like protein in Arabidopsis thaliana. To functionally characterize the Arabidopsis orthologue, two AtRsgA T-DNA insertion lines were analyzed in this study. The exon line (rsgA-e) led to embryo lethality, while the intron line (rsgA-i) caused severe dwarf, pale green phenotype. Further investigation of rsgA-i mutant line revealed defects in chloroplast biogenesis which led to increased number of chloroplasts, decreased chloroplast size, decreased air space between mesophyll cells and smaller shoot apical meristems, which showed unusual proplastid accumulation. Moreover, rsgA-i plants showed reduction in chlorophyll A and B content, decreased electron transport rate and photosynthetic efficiency. Further analyses revealed that the protein is involved in chloroplast 30S subunit maturation. Interestingly, we observed that while chloroplast-targeted and chloroplast-encoded proteins are generally downregulated in the mutant, a contrasting upregulation of the corresponding transcripts is observed, indicating an elaborate compensatory mechanism. To conclude, the study presented here reveals a ribosome assembly factor and a compensatory mechanism activated during impaired chloroplast function.}, language = {en} }