@misc{SiblyGrimmMartinetal.2013, author = {Sibly, Richard M. and Grimm, Volker and Martin, Benjamin T. and Johnston, Alice S. A. and Kulakowska, Katarzyna and Topping, Christopher J. and Calow, Peter and Nabe-Nielsen, Jacob and Thorbek, Pernille and DeAngelis, Donald L.}, title = {Representing the acquisition and use of energy by individuals in agent-based models of animal populations}, series = {Methods in ecology and evolution : an official journal of the British Ecological Society}, volume = {4}, journal = {Methods in ecology and evolution : an official journal of the British Ecological Society}, number = {2}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {2041-210X}, doi = {10.1111/2041-210x.12002}, pages = {151 -- 161}, year = {2013}, abstract = {Agent-based models (ABMs) are widely used to predict how populations respond to changing environments. As the availability of food varies in space and time, individuals should have their own energy budgets, but there is no consensus as to how these should be modelled. Here, we use knowledge of physiological ecology to identify major issues confronting the modeller and to make recommendations about how energy budgets for use in ABMs should be constructed. Our proposal is that modelled animals forage as necessary to supply their energy needs for maintenance, growth and reproduction. If there is sufficient energy intake, an animal allocates the energy obtained in the order: maintenance, growth, reproduction, energy storage, until its energy stores reach an optimal level. If there is a shortfall, the priorities for maintenance and growth/reproduction remain the same until reserves fall to a critical threshold below which all are allocated to maintenance. Rates of ingestion and allocation depend on body mass and temperature. We make suggestions for how each of these processes should be modelled mathematically. Mortality rates vary with body mass and temperature according to known relationships, and these can be used to obtain estimates of background mortality rate. If parameter values cannot be obtained directly, then values may provisionally be obtained by parameter borrowing, pattern-oriented modelling, artificial evolution or from allometric equations. The development of ABMs incorporating individual energy budgets is essential for realistic modelling of populations affected by food availability. Such ABMs are already being used to guide conservation planning of nature reserves and shell fisheries, to assess environmental impacts of building proposals including wind farms and highways and to assess the effects on nontarget organisms of chemicals for the control of agricultural pests.}, language = {en} } @phdthesis{Schaefer2019, author = {Sch{\"a}fer, Merlin}, title = {Understanding and predicting global change impacts on migratory birds}, doi = {10.25932/publishup-43925}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-439256}, school = {Universit{\"a}t Potsdam}, pages = {XIV, 153}, year = {2019}, abstract = {This is a publication-based dissertation comprising three original research stud-ies (one published, one submitted and one ready for submission; status March 2019). The dissertation introduces a generic computer model as a tool to investigate the behaviour and population dynamics of animals in cyclic environments. The model is further employed for analysing how migratory birds respond to various scenarios of altered food supply under global change. Here, ecological and evolutionary time-scales are considered, as well as the biological constraints and trade-offs the individual faces, which ultimately shape response dynamics at the population level. Further, the effect of fine-scale temporal patterns in re-source supply are studied, which is challenging to achieve experimentally. My findings predict population declines, altered behavioural timing and negative carry-over effects arising in migratory birds under global change. They thus stress the need for intensified research on how ecological mechanisms are affected by global change and for effective conservation measures for migratory birds. The open-source modelling software created for this dissertation can now be used for other taxa and related research questions. Overall, this thesis improves our mechanistic understanding of the impacts of global change on migratory birds as one prerequisite to comprehend ongoing global biodiversity loss. The research results are discussed in a broader ecological and scientific context in a concluding synthesis chapter.}, language = {en} } @article{RosenbaumRaatzWeithoffetal.2019, author = {Rosenbaum, Benjamin and Raatz, Michael and Weithoff, Guntram and Fussmann, Gregor F. and Gaedke, Ursula}, title = {Estimating parameters from multiple time series of population dynamics using bayesian inference}, series = {Frontiers in ecology and evolution}, volume = {6}, journal = {Frontiers in ecology and evolution}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {2296-701X}, doi = {10.3389/fevo.2018.00234}, pages = {14}, year = {2019}, abstract = {Empirical time series of interacting entities, e.g., species abundances, are highly useful to study ecological mechanisms. Mathematical models are valuable tools to further elucidate those mechanisms and underlying processes. However, obtaining an agreement between model predictions and experimental observations remains a demanding task. As models always abstract from reality one parameter often summarizes several properties. Parameter measurements are performed in additional experiments independent of the ones delivering the time series. Transferring these parameter values to different settings may result in incorrect parametrizations. On top of that, the properties of organisms and thus the respective parameter values may vary considerably. These issues limit the use of a priori model parametrizations. In this study, we present a method suited for a direct estimation of model parameters and their variability from experimental time series data. We combine numerical simulations of a continuous-time dynamical population model with Bayesian inference, using a hierarchical framework that allows for variability of individual parameters. The method is applied to a comprehensive set of time series from a laboratory predator-prey system that features both steady states and cyclic population dynamics. Our model predictions are able to reproduce both steady states and cyclic dynamics of the data. Additionally to the direct estimates of the parameter values, the Bayesian approach also provides their uncertainties. We found that fitting cyclic population dynamics, which contain more information on the process rates than steady states, yields more precise parameter estimates. We detected significant variability among parameters of different time series and identified the variation in the maximum growth rate of the prey as a source for the transition from steady states to cyclic dynamics. By lending more flexibility to the model, our approach facilitates parametrizations and shows more easily which patterns in time series can be explained also by simple models. Applying Bayesian inference and dynamical population models in conjunction may help to quantify the profound variability in organismal properties in nature.}, language = {en} } @misc{ReilRosenfeldImholtetal.2017, author = {Reil, Daniela and Rosenfeld, Ulrike M. and Imholt, Christian and Schmidt, Sabrina and Ulrich, Rainer G. and Eccard, Jana and Jacob, Jens}, title = {Puumala hantavirus infections in bank vole populations}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {957}, issn = {1866-8372}, doi = {10.25932/publishup-43123}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-431232}, pages = {15}, year = {2017}, abstract = {Background In Europe, bank voles (Myodes glareolus) are widely distributed and can transmit Puumala virus (PUUV) to humans, which causes a mild to moderate form of haemorrhagic fever with renal syndrome, called nephropathia epidemica. Uncovering the link between host and virus dynamics can help to prevent human PUUV infections in the future. Bank voles were live trapped three times a year in 2010-2013 in three woodland plots in each of four regions in Germany. Bank vole population density was estimated and blood samples collected to detect PUUV specific antibodies. Results We demonstrated that fluctuation of PUUV seroprevalence is dependent not only on multi-annual but also on seasonal dynamics of rodent host abundance. Moreover, PUUV infection might affect host fitness, because seropositive individuals survived better from spring to summer than uninfected bank voles. Individual space use was independent of PUUV infections. Conclusions Our study provides robust estimations of relevant patterns and processes of the dynamics of PUUV and its rodent host in Central Europe, which are highly important for the future development of predictive models for human hantavirus infection risk.}, language = {en} } @article{ReilBinderFreiseetal.2018, author = {Reil, Daniela and Binder, Florian and Freise, Jona and Imholt, Christian and Beyrers, Konrad and Jacob, Jens and Kr{\"u}ger, Detlev H. and Hofmann, J{\"o}rg and Dreesman, Johannes and Ulrich, Rainer G{\"u}nter}, title = {Hantaviren in Deutschland}, series = {Berliner und M{\"u}nchener tier{\"a}rztliche Wochenschrift}, volume = {131}, journal = {Berliner und M{\"u}nchener tier{\"a}rztliche Wochenschrift}, number = {11-12}, publisher = {Schl{\"u}tersche Verlagsgesellschaft mbH \& Co. KG.}, address = {Hannover}, issn = {0005-9366}, doi = {10.2376/0005-9366-18003}, pages = {453 -- 464}, year = {2018}, abstract = {Hantaviruses are small mammal-associated pathogens that are found in rodents but also in shrews, moles and bats. Aim of this manuscript is to give a current overview of the epidemiology and ecology of hantaviruses in Germany and to discuss respective models for the prediction of virus outbreaks. In Germany the majority of human disease cases are caused by the Puumala virus (PUUV), transmitted by the bank vole (Myodes glareolus). PUUV is associated with the Western evolutionary lineage of the bank vole and is not present in the eastern and northern parts of Germany. A second human pathogenic hantavirus is the Dobrava-Belgrade virus (DOBV), genotype Kurkino; its reservoir host, the striped field mouse (Apodemus agrarius), is mostly occurring in the eastern part of Germany. A PUUV-related hantavirus is the rarely pathogenic Tula virus (TULV), that is associated with the common vole (Microtus arvalis). In addition, Seewis virus, Asikkala virus, and Bruges virus are shrew- and mole-associated hantaviruses with still unknown pathogenicity in humans. Human disease cases are associated with the different hantaviruses according to their regional distribution. The viruses can cause mild to severe but also subclinical courses of the respective disease. The number of human PUUV disease cases in 2007, 2010, 2012, 2015 and 2017 correlates with the occurrence of high levels of seed production of beech trees ("beech mast") in the preceding year. Models based on weather parameters for the prediction of PUUV disease clusters as developed in recent years need further validation and optimisation. in addition to the abundance of infected reservoir rodents, the exposure behaviour of humans affects the risk of human infection. The application of robust forecast models can assist the public health service to develop and communicate spatially and temporally targeted information. Thus, further recommendations to mitigate infection risk for the public may be provided.}, language = {de} } @misc{RaatzvanVelzenGaedke2018, author = {Raatz, Michael and van Velzen, Ellen and Gaedke, Ursula}, title = {Co-adaptation impacts the robustness of predator-prey dynamics against perturbations}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {809}, issn = {1866-8372}, doi = {10.25932/publishup-44248}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-442489}, pages = {16}, year = {2018}, abstract = {Global change threatens the maintenance of ecosystem functions that are shaped by the persistence and dynamics of populations. It has been shown that the persistence of species increases if they possess larger trait adaptability. Here, we investigate whether trait adaptability also affects the robustness of population dynamics of interacting species and thereby shapes the reliability of ecosystem functions that are driven by these dynamics. We model co-adaptation in a predator-prey system as changes to predator offense and prey defense due to evolution or phenotypic plasticity. We investigate how trait adaptation affects the robustness of population dynamics against press perturbations to environmental parameters and against pulse perturbations targeting species abundances and their trait values. Robustness of population dynamics is characterized by resilience, elasticity, and resistance. In addition to employing established measures for resilience and elasticity against pulse perturbations (extinction probability and return time), we propose the warping distance as a new measure for resistance against press perturbations, which compares the shapes and amplitudes of pre- and post-perturbation population dynamics. As expected, we find that the robustness of population dynamics depends on the speed of adaptation, but in nontrivial ways. Elasticity increases with speed of adaptation as the system returns more rapidly to the pre-perturbation state. Resilience, in turn, is enhanced by intermediate speeds of adaptation, as here trait adaptation dampens biomass oscillations. The resistance of population dynamics strongly depends on the target of the press perturbation, preventing a simple relationship with the adaptation speed. In general, we find that low robustness often coincides with high amplitudes of population dynamics. Hence, amplitudes may indicate the robustness against perturbations also in other natural systems with similar dynamics. Our findings show that besides counteracting extinctions, trait adaptation indeed strongly affects the robustness of population dynamics against press and pulse perturbations.}, language = {en} } @article{RaatzvanVelzenGaedke2019, author = {Raatz, Michael and van Velzen, Ellen and Gaedke, Ursula}, title = {Co-adaptation impacts the robustness of predator-prey dynamics against perturbations}, series = {Ecology and Evolution}, volume = {9}, journal = {Ecology and Evolution}, number = {7}, publisher = {John Wiley \& Sons}, address = {Hoboken, NJ}, issn = {2045-7758}, doi = {10.1002/ece3.5006}, pages = {3823 -- 3836}, year = {2019}, abstract = {Global change threatens the maintenance of ecosystem functions that are shaped by the persistence and dynamics of populations. It has been shown that the persistence of species increases if they possess larger trait adaptability. Here, we investigate whether trait adaptability also affects the robustness of population dynamics of interacting species and thereby shapes the reliability of ecosystem functions that are driven by these dynamics. We model co-adaptation in a predator-prey system as changes to predator offense and prey defense due to evolution or phenotypic plasticity. We investigate how trait adaptation affects the robustness of population dynamics against press perturbations to environmental parameters and against pulse perturbations targeting species abundances and their trait values. Robustness of population dynamics is characterized by resilience, elasticity, and resistance. In addition to employing established measures for resilience and elasticity against pulse perturbations (extinction probability and return time), we propose the warping distance as a new measure for resistance against press perturbations, which compares the shapes and amplitudes of pre- and post-perturbation population dynamics. As expected, we find that the robustness of population dynamics depends on the speed of adaptation, but in nontrivial ways. Elasticity increases with speed of adaptation as the system returns more rapidly to the pre-perturbation state. Resilience, in turn, is enhanced by intermediate speeds of adaptation, as here trait adaptation dampens biomass oscillations. The resistance of population dynamics strongly depends on the target of the press perturbation, preventing a simple relationship with the adaptation speed. In general, we find that low robustness often coincides with high amplitudes of population dynamics. Hence, amplitudes may indicate the robustness against perturbations also in other natural systems with similar dynamics. Our findings show that besides counteracting extinctions, trait adaptation indeed strongly affects the robustness of population dynamics against press and pulse perturbations.}, language = {en} } @article{PennekampIlesGarlandetal.2019, author = {Pennekamp, Frank and Iles, Alison C. and Garland, Joshua and Brennan, Georgina and Brose, Ulrich and Gaedke, Ursula and Jacob, Ute and Kratina, Pavel and Matthews, Blake and Munch, Stephan and Novak, Mark and Palamara, Gian Marco and Rall, Bjorn C. and Rosenbaum, Benjamin and Tabi, Andrea and Ward, Colette and Williams, Richard and Ye, Hao and Petchey, Owen L.}, title = {The intrinsic predictability of ecological time series and its potential to guide forecasting}, series = {Ecological monographs : a publication of the Ecological Society of America.}, volume = {89}, journal = {Ecological monographs : a publication of the Ecological Society of America.}, number = {2}, publisher = {Wiley}, address = {Hoboken}, issn = {0012-9615}, doi = {10.1002/ecm.1359}, pages = {17}, year = {2019}, language = {en} } @article{MassieRyabovBlasiusetal.2013, author = {Massie, Thomas Michael and Ryabov, Alexei and Blasius, Bernd and Weithoff, Guntram and Gaedke, Ursula}, title = {Complex transient dynamics of stage-structured populations in response to environmental changes}, series = {The American naturalist : a bi-monthly journal devoted to the advancement and correlation of the biological sciences}, volume = {182}, journal = {The American naturalist : a bi-monthly journal devoted to the advancement and correlation of the biological sciences}, number = {1}, publisher = {Univ. of Chicago Press}, address = {Chicago}, issn = {0003-0147}, doi = {10.1086/670590}, pages = {103 -- 119}, year = {2013}, abstract = {Stage structures of populations can have a profound influence on their dynamics. However, not much is known about the transient dynamics that follow a disturbance in such systems. Here we combined chemostat experiments with dynamical modeling to study the response of the phytoplankton species Chlorella vulgaris to press perturbations. From an initially stable steady state, we altered either the concentration or dilution rate of a growth-limiting resource. This disturbance induced a complex transient response-characterized by the possible onset of oscillations-before population numbers relaxed to a new steady state. Thus, cell numbers could initially change in the opposite direction of the long-term change. We present quantitative indexes to characterize the transients and to show that the dynamic response is dependent on the degree of synchronization among life stages, which itself depends on the state of the population before perturbation. That is, we show how identical future steady states can be approached via different transients depending on the initial population structure. Our experimental results are supported by a size-structured model that accounts for interplay between cell-cycle and population-level processes and that includes resource-dependent variability in cell size. Our results should be relevant to other populations with a stage structure including organisms of higher order.}, language = {en} } @article{MartinJagerNisbetetal.2013, author = {Martin, Benjamin T. and Jager, Tjalling and Nisbet, Roger M. and Preuss, Thomas G. and Grimm, Volker}, title = {Predicting population dynamics from the properties of individuals - a cross-level test of dynamic energy budget theory}, series = {The American naturalist : a bi-monthly journal devoted to the advancement and correlation of the biological sciences}, volume = {181}, journal = {The American naturalist : a bi-monthly journal devoted to the advancement and correlation of the biological sciences}, number = {4}, publisher = {Univ. of Chicago Press}, address = {Chicago}, issn = {0003-0147}, doi = {10.1086/669904}, pages = {506 -- 519}, year = {2013}, abstract = {Individual-based models (IBMs) are increasingly used to link the dynamics of individuals to higher levels of biological organization. Still, many IBMs are data hungry, species specific, and time-consuming to develop and analyze. Many of these issues would be resolved by using general theories of individual dynamics as the basis for IBMs. While such theories have frequently been examined at the individual level, few cross-level tests exist that also try to predict population dynamics. Here we performed a cross-level test of dynamic energy budget (DEB) theory by parameterizing an individual-based model using individual-level data of the water flea, Daphnia magna, and comparing the emerging population dynamics to independent data from population experiments. We found that DEB theory successfully predicted population growth rates and peak densities but failed to capture the decline phase. Further assumptions on food-dependent mortality of juveniles were needed to capture the population dynamics after the initial population peak. The resulting model then predicted, without further calibration, characteristic switches between small-and large-amplitude cycles, which have been observed for Daphnia. We conclude that cross-level tests help detect gaps in current individual-level theories and ultimately will lead to theory development and the establishment of a generic basis for individual-based models and ecology.}, language = {en} }