@article{KoesterkeHamann1995, author = {Koesterke, Lars and Hamann, Wolf-Rainer}, title = {Spectral analyses of 25 galactic Wolf-Rayet stars of the carbon sequence}, year = {1995}, language = {en} } @article{IgnaceGayleyHamannetal.2013, author = {Ignace, Rico and Gayley, Kenneth G. and Hamann, Wolf-Rainer and Huenemoerder, David P. and Oskinova, Lida and Pollock, Andy M. T. and McFall, Michael}, title = {THE XMM-NEWTON/EPIC X-RAY LIGHT CURVE ANALYSIS OF WR 6}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {775}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/775/1/29}, pages = {12}, year = {2013}, abstract = {We obtained four pointings of over 100 ks each of the well-studied Wolf-Rayet star WR 6 with the XMM-Newton satellite. With a first paper emphasizing the results of spectral analysis, this follow-up highlights the X-ray variability clearly detected in all four pointings. However, phased light curves fail to confirm obvious cyclic behavior on the well-established 3.766 day period widely found at longer wavelengths. The data are of such quality that we were able to conduct a search for event clustering in the arrival times of X-ray photons. However, we fail to detect any such clustering. One possibility is that X-rays are generated in a stationary shock structure. In this context we favor a corotating interaction region (CIR) and present a phenomenological model for X-rays from a CIR structure. We show that a CIR has the potential to account simultaneously for the X-ray variability and constraints provided by the spectral analysis. Ultimately, the viability of the CIR model will require both intermittent long-term X-ray monitoring of WR 6 and better physical models of CIR X-ray production at large radii in stellar winds.}, language = {en} } @article{HuenemoerderGayleyHamannetal.2015, author = {Huenemoerder, David P. and Gayley, K. G. and Hamann, Wolf-Rainer and Ignace, R. and Nichols, J. S. and Oskinova, Lida and Pollock, A. M. T. and Schulz, Norbert S. and Shenar, Tomer}, title = {Probing Wolf-Rayet winds: Chandra/HETG X-ray spectra of WR 6}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {815}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/815/1/29}, pages = {16}, year = {2015}, abstract = {With a deep Chandra/HETGS exposure of WR 6, we have resolved emission lines whose profiles show that the X-rays originate from a uniformly expanding spherical wind of high X-ray-continuum optical depth. The presence of strong helium-like forbidden lines places the source of X-ray emission at tens to hundreds of stellar radii from the photosphere. Variability was present in X-rays and simultaneous optical photometry, but neither were correlated with the known period of the system or with each other. An enhanced abundance of sodium revealed nuclear-processed material, a quantity related to the evolutionary state of the star. The characterization of the extent and nature of the hot plasma in WR 6 will help to pave the way to a more fundamental theoretical understanding of the winds and evolution of massive stars.}, language = {en} } @article{HuenemoerderGayleyHamannetal.2015, author = {Huenemoerder, D. and Gayley, K. and Hamann, Wolf-Rainer and Ignace, R. and Nichols, J. and Oskinova, Lida and Pollock, A. M. T. and Schulz, N.}, title = {High Resolution X-Ray Spectra of WR 6}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88236}, pages = {301 -- 304}, year = {2015}, abstract = {As WR 6 is a putatively single WN4 star, and is relatively bright (V = 6.9), it is an ideal case for studying the wind mechanisms in these extremely luminous stars. To obtain higher resolution spectra at higher energy (above 1 keV) than previously obtained with the XMM/Newton RGS, we have observed WR 6 with the Chandra High Energy Transmission Grating Spectrometer for 450 ks. We have resolved emission lines of S, Si, Mg, Ne, and Fe, which all show a "fin"-shaped prole, characteristic of a self-absorbed uniformly expanding shell. Steep blue edges gives robust maximal expansion velocities of about 2000 km/s, somewhat larger than the 1700km/s derived from UV lines. The He-like lines all indicate that X-ray emitting plasmas are far from the photosphere - even at the higher energies where opacity is lowest { as was also the case for the longer wavelength lines observed with XMM-Newton/RGS. Abundances determined from X-ray spectral modeling indicate enhancements consistent with nucleosynthesis. The star was also variable in X-rays and in simultaneous optical photometry obtained with Chandra aspect camera, but not coherently with the optically known period of 3.765 days.}, language = {en} } @article{HubrigScholzHamannetal.2016, author = {Hubrig, Swetlana and Scholz, Kathleen and Hamann, Wolf-Rainer and Schoeller, M. and Ignace, R. and Ilyin, Ilya and Gayley, K. G. and Oskinova, Lida}, title = {Searching for a magnetic field in Wolf-Rayet stars using FORS 2 spectropolarimetry}, series = {Monthly notices of the Royal Astronomical Society}, volume = {458}, journal = {Monthly notices of the Royal Astronomical Society}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stw558}, pages = {3381 -- 3393}, year = {2016}, abstract = {To investigate if magnetic fields are present in Wolf-Rayet stars, we selected a few stars in the Galaxy and one in the Large Magellanic Cloud (LMC). We acquired low-resolution spectropolarimetric observations with the European Southern Observatory FORS 2 (FOcal Reducer low dispersion Spectrograph) instrument during two different observing runs. During the first run in visitor mode, we observed the LMC Wolf-Rayet star BAT99 7 and the stars WR 6, WR 7, WR 18, and WR 23 in our Galaxy. The second run in service mode was focused on monitoring the star WR 6. Linear polarization was recorded immediately after the observations of circular polarization. During our visitor observing run, the magnetic field for the cyclically variable star WR 6 was measured at a significance level of 3.3 sigma (< B-z > = 258 +/- 78 G). Among the other targets, the highest value for the longitudinal magnetic field, < B-z > = 327 +/- 141 G, was measured in the LMC star BAT99 7. Spectropolarimetric monitoring of the star WR 6 revealed a sinusoidal nature of the < B-z > variations with the known rotation period of 3.77 d, significantly adding to the confidence in the detection. The presence of the rotation-modulated magnetic variability is also indicated in our frequency periodogram. The reported field magnitude suffers from significant systematic uncertainties at the factor of 2 level, in addition to the quoted statistical uncertainties, owing to the theoretical approach used to characterize it. Linear polarization measurements showed no line effect in the stars, apart from WR 6. BAT99 7, WR 7, and WR 23 do not show variability of the linear polarization over two nights.}, language = {en} } @phdthesis{HamannPenaGraefeneretal.2003, author = {Hamann, Wolf-Rainer and Pena, M. and Gr{\"a}fener, G{\"o}tz and Ruiz, M. T.}, title = {The central star of the planetary nebula N66 in the Large Magellanic Cloud : a detailed analysis of its dramatic evolution 1983 - 2000}, issn = {0004-6361}, year = {2003}, language = {en} } @inproceedings{HamannOskinovaFeldmeier2007, author = {Hamann, Wolf-Rainer and Oskinova, Lida and Feldmeier, Achim}, title = {Spectrum formation in clumpy stellar winds}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17838}, year = {2007}, abstract = {Modeling expanding atmospheres is a difficult task because of the extreme non-LTE situation, the need to account for complex model atoms, especially for the iron-group elements with their millions of lines, and because of the supersonic expansion. Adequate codes have been developed e.g. by Hillier (CMFGEN), the Munich group (Puls, Pauldrach), and in Potsdam (PoWR code, Hamann et al.). While early work was based on the assumption of a smooth and homogeneous spherical stellar wind, the need to account for clumping became obvious about ten years ago. A relatively simple first-order clumping correction was readily implemented into the model codes. However, its simplifying assumptions are severe. Most importantly, the clumps are taken to be optically thin at all frequencies ("microclumping"). We discuss the consequences of this approximation and describe an approach to account for optically thick clumps ("macroclumping"). First results demonstrate that macroclumping can generally reduce the strength of spectral features, depending on their optical thickness. The recently reported discrepancy between the Hα diagnostic and the Pv resonance lines in O star spectra can be resolved without decreasing the mass-loss rates, when macroclumping is taken into account.}, language = {en} } @article{HamannKoesterkeWesselowski1995, author = {Hamann, Wolf-Rainer and Koesterke, Lars and Wesselowski, U.}, title = {Spectral analyses of the galactic Wolf-Rayet stars : hydrogen-helium abundances and improved stellar parameters for the WN class}, year = {1995}, language = {en} } @article{HamannKoesterkeWesselowski1995, author = {Hamann, Wolf-Rainer and Koesterke, Lars and Wesselowski, U.}, title = {Spectral atlas of galactic Wolf-Rayet stars (WN-sequence)}, year = {1995}, language = {en} } @article{HamannKoesterkeGraefener2002, author = {Hamann, Wolf-Rainer and Koesterke, Lars and Gr{\"a}fener, G{\"o}tz}, title = {Spectral analyses of Wolf-Rayet winds}, year = {2002}, abstract = {The analysis of Wolf-Rayet spectra requires adequate model atmospheres which treat the non-LTE radiation transfer in a spherically expanding medium. Present state-of-the-art calculations account for complex model atoms with, typically, a few hundred energy levels and a few thousand spectral lines of He and CNO elements. In the most recent version of our model code, blanketing by millions of lines from iron-group elements is also included. These models have been widely applied for the spectral analysis of WN stars in the Galaxy and LMC. WN spectra can be well reproduced in most cases. WC stars have not yet been analyzed comprehensively, because the agreement with observations becomes satisfactory only when line-blanketed models are applied. The introduction of inhomogeneities (clumping), although treated in a rough approximation, has significantly improved the fit between synthetic and observed spectra with respect to the electron-scattering wings of strong lines. The mass-loss rates obtained from spectral analyses become smaller by a factor 2-3 if clumping is accounted for. A pre-specified velocity law is adopted for our models, but the radiation pressure can be evaluated from our detailed calculation and can be compared a posteriori with the required wind acceleration. Surprisingly we find that the line-blanketed models are not far from being hydrodynamically consistent, thus indicating that radiation pressure is probably the main driving force for the mass-loss from WR stars.}, language = {en} }