@phdthesis{Kittner2011, author = {Kittner, Madeleine}, title = {Folding and aggregation of amyloid peptides}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-53570}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Aggregation of the Amyloid β (Aβ) peptide to amyloid fibrils is associated with the outbreak of Alzheimer's disease. Early aggregation intermediates in form of soluble oligomers are of special interest as they are believed to be the major toxic components in the process. These oligomers are of disordered and transient nature. Therefore, their detailed molecular structure is difficult to access experimentally and often remains unknown. In the present work extensive, fully atomistic replica exchange molecular dynamics simulations were performed to study the preaggregated, monomer states and early aggregation intermediates (dimers, trimers) of Aβ(25-35) and Aβ(10-35)-NH2 in aqueous solution. The folding and aggregation of Aβ(25-35) were studied at neutral pH and 293 K. Aβ(25-35) monomers mainly adopt β-hairpin conformations characterized by a β-turn formed by residues G29 and A30, and a β-sheet between residues N27-K28 and I31-I32 in equilibrium with coiled conformations. The β-hairpin conformations served as initial configurations to model spontaneous aggregation of Aβ(25-35). As expected, within the Aβ(25-35) dimer and trimer ensembles many different poorly populated conformations appear. Nevertheless, we were able to distinguish between disordered and fibril-like oligomers. Whereas disordered oligomers are rather compact with few intermolecular hydrogen bonds (HBs), fibril-like oligomers are characterized by the formation of large intermolecular β-sheets. In most of the fibril-like dimers and trimers individual peptides are fully extended forming in- or out-of-register antiparallel β-sheets. A small amount of fibril-like trimers contained V-shaped peptides forming parallel β-sheets. The dimensions of extended and V-shaped oligomers correspond well to the diameters of two distinct morphologies found for Aβ(25-35) fibrils. The transition from disordered to fibril-like Aβ(25-35) dimers is unfavorable but driven by energy. The lower energy of fibril-like dimers arises from favorable intermolecular HBs and other electrostatic interactions which compete with a loss in entropy. Approximately 25 \% of the entropic cost correspond to configurational entropy. The rest relates to solvent entropy, presumably caused by hydrophobic and electrostatic effects. In contrast to the transition towards fibril-like dimers the first step of aggregation is driven by entropy. Here, we compared structural and thermodynamic properties of the individual monomer, dimer and trimer ensembles to gain qualitative information about the aggregation process. The β-hairpin conformation observed for monomers is successively dissolved in dimer and trimer ensembles while instead intermolecular β-sheets are formed. As expected upon aggregation the configurational entropy decreases. Additionally, the solvent accessible surface area (SASA), especially the hydrophobic SASA, decreases yielding a favorable solvation free energy which overcompensates the loss in configurational entropy. In summary, the hydrophobic effect, possibly combined with electrostatic effects, yields an increase in solvent entropy which is believed to be one major driving force towards aggregation. Spontaneous folding of the Aβ(10-35)-NH2 monomer was modeled using two force fields, GROMOS96 43a1 and OPLS/AA, and compared to primary NMR data collected at pH 5.6 and 283 K taken from the literature. Unexpectedly, the two force fields yielded significantly different main conformations. Comparison between experimental and calculated nuclear Overhauser effect (NOE) distances is not sufficient to distinguish between the different force fields. Additionally, the comparison with scalar coupling constants suggest that the chosen protonation in both simulations corresponds to a pH lower than in the experiment. Based on this analysis we were unable to determine which force field yields a better description of this system. Dimerization of Aβ(10-35)-NH2 was studied at neutral pH and 300 K. Dimer conformations arrange in many distinct, poorly populated and rather complex alignments or interlocking patterns which are rather stabilized by side chain interactions than by specific intermolecular hydrogen bonds. Similar to Aβ(25-35) dimers, transition towards β-sheet-rich, fibril-like Aβ(10-35) dimers is driven by energy competing with a loss in entropy. Here, transition is mediated by favorable peptide-solvent and solvent-solvent interactions mainly arising from electrostatic interactions.}, language = {en} } @phdthesis{Hinz2012, author = {Hinz, Justyna}, title = {Factors modifying the aggregation of atrophin-1 acting in cis and in trans}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-60385}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {Ten polyQ (polyglutamine) diseases constitute a group of hereditary, neurodegenerative, lethal disorders, characterized by neuronal loss and motor and cognitive impairments. The only common molecular feature of polyQ disease-associated proteins is the homopolymeric polyglutamine repeat. The pathological expansion of polyQ tract invariably leads to protein misfolding and aggregation, resulting in formation of the fibrillar intraneuronal deposits (aggregates) of the disease protein. The polyQ-related cellular toxicity is currently attributed to early, small, soluble aggregate species (oligomers), whereas end-stage, fibrillar, insoluble aggregates are considered to be benign. In the complex cellular environment aggregation and toxicity of mutant polyQ proteins can be affected by both the sequences of the corresponding disease protein (factors acting in cis) and the cellular environment (factors acting in trans). Additionally, the nucleus has been suggested to be the primary site of toxicity in the polyQ-based neurodegeneration. In this study, the dynamics and structure of nuclear and cytoplasmic inclusions were examined to determine the intrinsic and extrinsic factors influencing the cellular aggregation of atrophin-1, a protein implicated in the pathology of dentatorubral-pallidoluysian atrophy (DRPLA), a polyQ-based disease with complex clinical features. Dynamic imaging, combined with biochemical and biophysical approaches revealed a large heterogeneity in the dynamics of atrophin-1 within the nuclear inclusions compared with the compact and immobile cytoplasmic aggregates. At least two types of inclusions of polyQ-expanded atrophin-1 with different mobility of the molecular species and ability to exchange with the surrounding monomer pool coexist in the nucleus of the model cell system, neuroblastoma N2a cells. Furthermore, our novel cross-seeding approach which allows for monitoring of the architecture of the aggregate core directly in the cell revealed an evolution of the aggregate core of the polyQ-expanded ATN1 from one composed of the sequences flanking the polyQ domain at early aggregation phases to one dominated by the polyQ stretch in the later aggregation phase. Intriguingly, these changes in the aggregate core architecture of nuclear and cytoplasmic inclusions mirrored the changes in the protein dynamics and physico-chemical properties of the aggregates in the aggregation time course. 2D-gel analyses followed by MALDI-TOF MS (matrix-assisted laser desorption/ionization time of flight mass spectrometry) were used to detect alterations in the interaction partners of the pathological ATN1 variant compared to the non-pathological ATN1. Based on these results, we propose that the observed complexity in the dynamics of the nuclear inclusions provides a molecular explanation for the enhanced cellular toxicity of the nuclear aggregates in polyQ-based neurodegeneration.}, language = {en} }