@phdthesis{Kaestner2021, author = {Kaestner, Pia Isabel}, title = {Neue Polymermaterialien auf der Basis von funktionalisierten ionischen Fl{\"u}ssigkeiten zur potentiellen Anwendung in Membranen}, doi = {10.25932/publishup-50940}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-509403}, school = {Universit{\"a}t Potsdam}, pages = {VI, 164}, year = {2021}, abstract = {Die vorliegende Arbeit thematisiert die Synthese und Charakterisierung von neuen funktionalisierten ionischen Fl{\"u}ssigkeiten und deren Polymerisation. Die ionischen Fl{\"u}ssigkeiten wurden dabei sowohl mit polymerisierbaren Kationen als auch Anionen hergestellt. Zum einen wurden bei thermisch initiierten Polymerisationen Azobis(isobutyronitril) (AIBN) verwendet und zum anderen dienten bei photochemisch initiierten Polymerisationen Bis-4-(methoxybenzoyl)diethylgermanium (Ivocerin®) als Radikalstarter. Mittels Gelpermeationschromatographie konnte das Homopolymer Polydimethylaminoethylmethacrylat untersucht werden, welches erst im Anschluss an die GPC-Messungen polymeranalog modifiziert wurde. Dabei wurden nach einer Quaternisierung und anschließender Anionenmetathese bei diesen Polymeren die Grenzviskosit{\"a}ten bestimmt und mit den Grenzviskosit{\"a}ten der direkt polymerisierten ionischen Fl{\"u}ssigkeiten verglichen. Bei der direkten Polymerisation von Poly(N-[2-(Methacryloyloxy)ethyl]-N-butyl-N,N-dimethyl-ammoniumbis(trifluormethylsulfonyl)imid) lag [η_Huggins] bei 100 mL/g und bei dem polymeranalog hergestellten Polymer betrug [η_Huggins] = 40 mL/g. Die ionischen Fl{\"u}ssigkeiten mit polymerisierbaren funktionellen Gruppen wurden mittels Photo-DSC hinsichtlich der maximalen Polymerisationsgeschwindigkeit (Rpmax), der Zeit, in der dieses Maximum erreicht wurde, tmax, ihrer Glas{\"u}berganstemperatur (Tg) und des Umsatzes an Vinylprotonen untersucht. Bei diesen Messungen wurde zum einen der Einfluss der unterschiedlichen Alkylkettenl{\"a}nge am Ammoniumion und der Einfluss von verschiedenen Anionen bei gleichbleibender Kationenstruktur analysiert. So polymerisierte das ethylsubstituierte Kation mit einer tmax von 21 Sekunden am langsamsten. Die maximale Polymerisationsgeschwindigkeit (Rpmax) betrug 3.3∙10-2 s-1. Die tmax Werte der {\"u}brigen alkylsubstituierten ionischen Fl{\"u}ssigkeiten mit einer polymerisierbaren funktionellen Gruppe hingegen lagen zwischen 10 und 15 Sekunden. Die Glas{\"u}bergangstemperaturen der mittels photoinduzierter Polymerisation hergestellten Polymere lagen mit 44 bis 55 °C nahe beieinander. Alle Monomere zeigten einen hohen Umsatz der Vinylprotonen; er betrug zwischen 93 und 100\%. Mithilfe einer Bandanlage, ausger{\"u}stet mit einer LED (λ = 395 nm), konnten Polymerfilme hergestellt werden. Der Umsatz an Doppelbindungs{\"a}quivalenten dieser Filme wurde anhand der 1H-NMR Spektroskopie bestimmt. Bei der dynamisch-mechanischen Analyse wurden die Polymerfilme mit einer konstanten Heizrate und Frequenz periodisch wechselnden Beanspruchungen ausgesetzt, um die Glas{\"u}bergangstemperaturen zu bestimmen. Die niedrigste Tg mit 26 °C besaß das butylsubstituierte N-[2-(Methacryloyloxy)ethyl]-N-butyl-N,N-dimethyl-ammoniumbis(trifluormethylsulfonyl)imid, welches als Polymerfilm mit Ivocerin® als Initiator hergestellt wurde, wohingegen die h{\"o}chste Tg bei dem gleichen Polymer, welches direkt durch freie radikalische Polymerisation der ionischen Fl{\"u}ssigkeit in Masse mit AIBN hergestellt wurde, 51 °C betrug. Zus{\"a}tzlich wurden die Filme unter dem Aspekt der Topographie mit einem Rasterkraftmikroskop untersucht, welches eine Dom{\"a}nenstruktur des Polymers N-[2-(methacryloyloxy)ethyl]-N-butyl-N,N-dimethyl-ammonium tris(pentafluorethyl)trifluorphosphat offenbarte.}, language = {de} } @phdthesis{Baczyński2009, author = {Baczyński, Krzysztof Konrad}, title = {Buckling instabilities of semiflexible filaments in biological systems}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-37927}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {In dieser Arbeit werden Knickinstabilit{\"a}ten von Filamenten in biologischen Systemen untersucht. Das Zytoskelett von Zellen ist aus solchen Filamenten aufgebaut. Sie sind f{\"u}r die mechanische Stabilit{\"a}t der Zelle verantwortlich und spielen eine große Rolle bei intrazellul{\"a}ren Transportprozessen durch molekulare Motoren, die verschiedene Lasten wie beispielsweise Organellen entlang der Filamente des Zytoskeletts transportieren. Filamente sind semiflexible Polymere, deren Biegeenergie {\"a}hnlich groß ist wie die thermische Energie, so dass sie auch als elastische Balken auf der Nanoskala gesehen werden k{\"o}nnen, die signifikante thermische Fluktuationen zeigen. Wie ein makroskopischer elastischer Balken k{\"o}nnen auch Filamente eine mechanische Knickinstabilit{\"a}t unter Kompression zeigen. Im ersten Teil dieser Arbeit wird untersucht, wie diese Instabilit{\"a}t durch thermische Fluktuationen der Filamente beeinflusst wird. In Zellen k{\"o}nnen Kompressionskr{\"a}fte durch molekulare Motoren erzeugt werden. Das geschieht zum Beispiel w{\"a}hrend der Zellteilung in der mitotischen Spindel. Im zweiten Teil der Arbeit untersuchen wir, wie die stochastische Natur einer von Motoren generierten Kraft die Knickinstabilit{\"a}t von Filamenten beeinflusst. Zun{\"a}chst stellen wir kurz das Problem von Knickinstabilit{\"a}ten auf der makroskopischen Skala dar und f{\"u}hren ein Modell f{\"u}r das Knicken von Filamenten oder elastischen St{\"a}ben in zwei Raumdimensionen und in Anwesenheit thermischer Fluktuationen ein. Wir pr{\"a}sentieren eine analytische L{\"o}sung f{\"u}r Knickinstabilit{\"a}ten in Anwesenheit thermischer Fluktuationen, die auf einer Renormierungsgruppenrechnung im Rahmen des nichtlinearen Sigma-Models basiert. Wir integrieren die kurzwelligen Fluktuationen aus, um eine effektive Theorie f{\"u}r die langwelligen Moden zu erhalten, die die Knickinstabilit{\"a}t bestimmen. Wir berechnen die {\"A}nderung der kritischen Kraft f{\"u}r die Knickinstabilit{\"a}t und zeigen, dass die thermischen Fluktuationen in zwei Raumdimensionen zu einer Zunahme der kritischen Kraft f{\"u}hren. Außerdem zeigen wir, dass thermische Fluktuationen im geknickten Zustand zu einer Zunahme der mittleren projizierten L{\"a}nge des Filaments in Richtung der wirkenden Kraft f{\"u}hren. Als Funktion der Konturl{\"a}nge des Filaments besitzt die mittlere projizierte L{\"a}nge eine Spitze an der Knickinstabilit{\"a}t, die durch thermische Fluktuationen abgerundet wird. Unser Hauptresultat ist die Beobachtung, dass ein geknicktes Filament unter dem Einfluss thermischer Fluktuationen gestreckt wird, d.h. dass seine mittlere projizierte L{\"a}nge in Richtung der Kompressionskraft auf Grund der thermischen Fluktuationen zunimmt. Unsere analytischen Resultate werden durch Monte-Carlo Simulationen der Knickinstabilit{\"a}t semiflexibler Filamente in zwei Raumdimensionen best{\"a}tigt. Wir f{\"u}hren auch Monte-Carlo Simulationen in h{\"o}heren Raumdimensionen durch und zeigen, dass die Zunahme der projizierten L{\"a}nge unter dem Einfluss thermischer Fluktuationen weniger ausgepr{\"a}gt ist und stark von der Wahl der Randbedingungen abh{\"a}ngt. Im zweiten Teil der Arbeit formulieren wir ein Modell f{\"u}r die Knickinstabilit{\"a}t semiflexibler Filamente unter dem Einfluss molekularer Motoren. Wir untersuchen ein System, in dem sich eine Gruppe von Motoren entlang eines fixierten Filaments bewegt, und dabei ein zweites Filament als Last tr{\"a}gt. Das Last-Filament wird gegen eine Wand gedr{\"u}ckt und knickt. W{\"a}hrend des Knickvorgangs k{\"o}nnen die Motoren, die die Kraft auf das Filament generieren, stochastisch von dem Filament ab- und an das Filament anbinden. Wir formulieren ein stochastisches Model f{\"u}r dieses System und berechnen die "mean first passage time", d.h. die mittlere Zeit f{\"u}r den {\"U}bergang von einem Zustand, in dem alle Motoren gebundenen sind zu einem Zustand, in dem alle Motoren abgebunden sind. Dieser {\"U}bergang entspricht auch einem {\"U}bergang aus dem gebogenen zur{\"u}ck in einen ungebogenen Zustand des Last-Filaments. Unser Resultat zeigt, dass f{\"u}r gen{\"u}gend kurze Mikrotubuli die Bewegung der Motoren von der durch das Last-Filament generierten Kraft beeinflusst wird. Diese Ergebnisse k{\"o}nnen in zuk{\"u}nftigen Experimenten {\"u}berpr{\"u}ft werden.}, language = {en} }