@phdthesis{Zhang2018, author = {Zhang, Quanchao}, title = {Shape-memory properties of polymeric micro-scale objects prepared by electrospinning and electrospraying}, school = {Universit{\"a}t Potsdam}, pages = {xvi, 53}, year = {2018}, abstract = {The ongoing trend of miniaturizing multifunctional devices, especially for minimally-invasive medical or sensor applications demands new strategies for designing the required functional polymeric micro-components or micro-devices. Here, polymers, which are capable of active movement, when an external stimulus is applied (e.g. shape-memory polymers), are intensively discussed as promising material candidates for realization of multifunctional micro-components. In this context further research activities are needed to gain a better knowledge about the underlying working principles for functionalization of polymeric micro-scale objects with a shape-memory effect. First reports about electrospun solid microfiber scaffolds, demonstrated a much more pronounced shape-memory effect than their bulk counterparts, indicating the high potential of electrospun micro-objects. Based on these initial findings this thesis was aimed at exploring whether the alteration of the geometry of micro-scale electrospun polymeric objects can serve as suitable parameter to tailor their shape-memory properties. The central hypothesis was that different geometries should result in different degrees of macromolecular chain orientation in the polymeric micro-scale objects, which will influence their mechanical properties as well as thermally-induced shape-memory function. As electrospun micro-scale objects, microfiber scaffolds composed of hollow microfibers with different wall thickness and electrosprayed microparticles as well as their magneto-sensitive nanocomposites all prepared from the same polymer exhibiting pronounced bulk shape-memory properties were investigated. For this work a thermoplastic multiblock copolymer, named PDC, with excellent bulk shape-memory properties, associated with crystallizable oligo(ε-caprolactone) (OCL) switching domains, was chosen for the preparation of electrospun micro-scale objects, while crystallizable oligo(p-dioxanone) (OPDO) segments serve as hard domains in PDC. In the first part of the thesis microfiber scaffolds with different microfiber geometries (solid or hollow with different wall thickness) were discussed. Hollow microfiber based PDC scaffolds were prepared by coaxial electrospinning from a 1, 1, 1, 3, 3, 3 hexafluoro-2-propanol (HFP) solution with a polymer concentration of 13\% w·v-1. Here as a first step core-shell fiber scaffolds consisting of microfibers with a PDC shell and sacrificial poly(ethylene glycol) (PEG) core are generated. The hollow PDC microfibers were achieved after dissolving the PEG core with water. The utilization of a fixed electrospinning setup and the same polymer concentration of the PDC spinning solution could ensure the fabrication of microfibers with almost identical outer diameters of 1.4 ± 0.3 µm as determined by scanning electron microscopy (SEM). Different hollow microfiber wall thicknesses of 0.5 ± 0.2 and 0.3 ± 0.2 µm (analyzed by SEM) have been realized by variation of the mass flow rate, while solid microfibers were obtained by coaxial electrospinning without supplying any core solution. Differential scanning calorimetry experiments and tensile tests at ambient temperature revealed an increase in degree of OCL crystallinity form χc,OCL = 34 ± 1\% to 43 ± 1\% and a decrease in elongation of break from 800 ± 40\% to 200 ± 50\% associated with an increase in Young´s modulus and failture stress for PDC hollow microfiber scaffolds when compared with soild fibers. The observed effects were enhanced with decreasing wall thickness of the single hollow fibers. The shape-memory properties of the electrospun PDC scaffolds were quantified by cyclic, thermomechanical tensile tests. Here, scaffolds comprising hollow microfibers exhibited lower shape fixity ratios around Rf = 82 ± 1\% and higher shape recovery ratios of Rr = 67 ± 1\% associated to more pronounced relaxation at constant strain during the first test cycle and a lower switching temperature of Tsw = 33 ± 1 °C than the fibrous meshes consisting of solid microfibers. These findings strongly support the central hypothesis that different fiber geometries (solid or hollow with different wall thickness) in electrospun scaffolds result in different degrees of macromolecular chain orientation in the polymeric micro-scale objects, which can be applied as design parameter for tailoring their mechanical and shape-memory properties. The second part of the thesis deals with electrosprayed particulate PDC micro-scale objects. Almost spherical PDC microparticles with diameters of 3.9 ± 0.9 μm (as determined by SEM) were achieved by electrospraying of HFP solution with a polymer concentration of 2\% w·v-1. In contrast, smaller particles with sizes of 400 ± 100 nm or 1.2 ± 0.3 μm were obtained for the magneto-sensitive composite PDC microparticles containing 23 ± 0.5 wt\% superparamagnetic magnetite nanoparticles (mNPs). All prepared PDC microparticles exhibited a similar overall crystallinity like the PDC bulk material as analyzed by DSC. AFM nanoindentation results revealed no influence of the nanofiller incorporation on the local mechanical properties represented by the reduced modulus determined for pure PDC microparticles and magneto-sensitive composite PDC microparticles with similar diameters around 1.3 µm. It was found that the reduced modulus of the nanocomposite microparticles increased substantially with decreasing particles size from 2.4 ± 0.9 GPa (1.2 µm) to 11.9 ± 3.1 GPa (0.4 µm), which can be related to a higher orientation of the macromolecules at the surface of smaller sized microparticles. The magneto-sensitivity of such nanocomposite microparticles could be demonstrated in two aspects. One was by attracting/collecting the composite micro-objects with an external permanent magnet. The other one was by a inductive heating to 44 ± 1 °C, which is well above the melting transition of the OCL switching domains, when compacted to a 10 x 10 mm2 film with a thickness of 10 µm and exposed to an alternating magnet field with an magnetic field strength of 30 kA·m-1. Both functions are of great relevance for designing next generation drug delivery systems combining targeting and on demand release. By a compression approach shape-memory functionalization of individual microparticles could be realized. Here different programming pressures and compression temperatures were applied. The shape-recovery capability of the programmed PDC microparticles was quantified by online and off-line heating experiments analyzed via microscopy measurement. The obtained shape-memory properties were found to be strongly depending on the applied programming pressure and temperature. The best shape-memory performance with a high shape recovery rate of about Rr = 80±1\% was obtained when a low pressure of 0.2 MPa was applied at 55 °C. Finally, it was demonstrated that PDC microparticles can be utilized as micro building parts for preparation of a macroscopic film with temporary stability by compression of a densely packed array of PDC microparticles at 60 °C followed by subsequent cooling to ambient temperature. This film disintegrates into individual microparticles upon heating to 60 °C. Based on this technology the design of stable macroscopic release systems can be envisioned, which can be easily fixed at the site of treatment (i.e. by suturing) and disintegrate on demand to microparticles facilitating the drug release. In summary, the results of this thesis could confirm the central hypothesis that the variation of the geometry of polymeric micro-objects is a suitable parameter to adjust their shape-memory performance by changing the degree of macromolecular chain orientation in the specimens or by enabling new functions like on demand disintegration. These fundamental findings might be relevant for designing novel miniaturized multifunctional polymer-based devices.}, language = {en} } @article{ZhangRešetičBehletal.2021, author = {Zhang, Pengfei and Rešetič, Andraž and Behl, Marc and Lendlein, Andreas}, title = {Multifunctionality in polymer networks by dynamic of coordination bonds}, series = {Macromolecular chemistry and physics}, volume = {222}, journal = {Macromolecular chemistry and physics}, number = {3}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-3935}, doi = {10.1002/macp.202000394}, pages = {11}, year = {2021}, abstract = {The need for multifunctional materials is driven by emerging technologies and innovations, such as in the field of soft robotics and tactile or haptic systems, where minimizing the number of operational components is not only desirable, but can also be essential for realizing such devices. This study report on designing a multifunctional soft polymer material that can address a number of operating requirements such as solvent resistance, reshaping ability, self-healing capability, fluorescence stimuli-responsivity, and anisotropic structural functions. The numerous functional abilities are associated to rhodium(I)-phosphine coordination bonds, which in a polymer network act with their dynamic and non-covalently bonded nature as multifunctional crosslinks. Reversible aggregation of coordination bonds leads to changes in fluorescence emission intensity that responds to chemical or mechanical stimuli. The fast dynamics and diffusion of rhodium-phosphine ions across and through contacting areas of the material provide for reshaping and self-healing abilities that can be further exploited for assembly of multiple pieces into complex forms, all without any loss to material-sensing capabilities.}, language = {en} } @article{ZhangBehlPengetal.2016, author = {Zhang, Pengfei and Behl, Marc and Peng, Xingzhou and Razzaq, Muhammad Yasar and Lendlein, Andreas}, title = {Ultrasonic Cavitation Induced Shape-Memory Effect in Porous Polymer Networks}, series = {Macromolecular rapid communications}, volume = {37}, journal = {Macromolecular rapid communications}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1022-1336}, doi = {10.1002/marc.201600439}, pages = {1897 -- 1903}, year = {2016}, abstract = {Inspired by the application of ultrasonic cavitation based mechanical force (CMF) to open small channels in natural soft materials (skin or tissue), it is explored whether an artificial polymer network can be created, in which shape-changes can be induced by CMF. This concept comprises an interconnected macroporous rhodium-phosphine (Rh-P) coordination polymer network, in which a CMF can reversibly dissociate the Rh-P microphases. In this way, the ligand exchange of Rh-P coordination bonds in the polymer network is accelerated, resulting in a topological rearrangement of molecular switches. This rearrangement of molecular switches enables the polymer network to release internal tension under ultrasound exposure, resulting in a CMF-induced shape-memory capability. The interconnected macroporous structure with thin pore walls is essential for allowing the CMF to effectively permeate throughout the polymer network. Potential applications of this CMF-induced shape-memory polymer can be mechanosensors or ultrasound controlled switches.}, language = {en} } @article{ZhangBehlPengetal.2019, author = {Zhang, Pengfei and Behl, Marc and Peng, Xingzhou and Balk, Maria and Lendlein, Andreas}, title = {Chemoresponsive Shape-Memory Effect of Rhodium-Phosphine Coordination Polymer Networks}, series = {Chemistry of materials : a publication of the American Chemical Society}, volume = {31}, journal = {Chemistry of materials : a publication of the American Chemical Society}, number = {15}, publisher = {American Chemical Society}, address = {Washington}, issn = {0897-4756}, doi = {10.1021/acs.chemmater.9b00363}, pages = {5402 -- 5407}, year = {2019}, abstract = {Chemoresponsive polymers are of technological significance for smart sensors or systems capable of molecular recognition. An important key requirement for these applications is the material's structural integrity after stimulation. We explored whether covalently cross-linked metal ion-phosphine coordination polymers (MPN) can be shaped into any temporary shape and are capable of recovering from this upon chemoresponsive exposure to triphenylphosphine (Ph3P) ligands, whereas the MPN provide structural integrity. Depending on the metal-ion concentration used during synthesis of the MPN, the degree of swelling of the coordination polymer networks could be adjusted. Once the MPN was immersed into Ph3P solution, the reversible ligand-exchange reaction between the metal ions and the free Ph3P in solution causes a decrease of the coordination cross-link density in MPN again. The Ph3P-treated MPN was able to maintain its original shape, indicating a certain stability of shape even after stimulation. In this way, chemoresponsive control of the elastic properties (increase in volume and decrease of mechanical strength) of the MPN was demonstrated. This remarkable behavior motivated us to explore whether the MPN are capable of a chemoresponsive shape-memory effect. In initial experiments, shape fixity of around 60\% and shape recovery of almost 90\% were achieved when the MPN was exposed to Ph3P in case of rhodium. Potential applications for chemoresponsive shape-memory systems could be shapable semiconductors, e.g., for lighting or catalysts, which provide catalytic activity on demand.}, language = {en} } @article{ZhangBehlBalketal.2020, author = {Zhang, Pengfei and Behl, Marc and Balk, Maria and Peng, Xingzhou and Lendlein, Andreas}, title = {Shape-programmable architectured hydrogels sensitive to ultrasound}, series = {Macromolecular rapid communications}, volume = {41}, journal = {Macromolecular rapid communications}, number = {7}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1022-1336}, doi = {10.1002/marc.201900658}, pages = {7}, year = {2020}, abstract = {On-demand motion of highly swollen polymer systems can be triggered by changes in pH, ion concentrations, or by heat. Here, shape-programmable, architectured hydrogels are introduced, which respond to ultrasonic-cavitation-based mechanical forces (CMF) by directed macroscopic movements. The concept is the implementation and sequential coupling of multiple functions (swellability in water, sensitivity to ultrasound, shape programmability, and shape-memory) in a semi-interpenetrating polymer network (s-IPN). The semi-IPN-based hydrogels are designed to function through rhodium coordination (Rh-s-IPNH). These coordination bonds act as temporary crosslinks. The porous hydrogels with coordination bonds (degree of swelling from 300 +/- 10 to 680 +/- 60) exhibit tensile strength sigma(max) up to 250 +/- 60 kPa. Shape fixity ratios up to 90\% and shape recovery ratios up to 94\% are reached. Potential applications are switches or mechanosensors.}, language = {en} } @article{ZerballLaschewskyvonKlitzing2015, author = {Zerball, Maximilian and Laschewsky, Andr{\´e} and von Klitzing, Regine}, title = {Swelling of Polyelectrolyte Multilayers: The Relation Between, Surface and Bulk Characteristics}, series = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, volume = {119}, journal = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, number = {35}, publisher = {American Chemical Society}, address = {Washington}, issn = {1520-6106}, doi = {10.1021/acs.jpcb.5b04350}, pages = {11879 -- 11886}, year = {2015}, abstract = {The odd even effect, i.e., the influence of the outermost layer of polyelectrolyte multilayers (PEMs) on their swelling behavior, is investigated. For that purpose poly(styrene sodium sulfonate) (PSS)/poly(diallyl-dimethylammonium chloride) (PDADMAC) polyelectrolyte multilayers are studied in air with 1\% relative humidity (RH), 30\% RH, 95\% RH, and in liquid water by ellipsometry, atomic force microscopy (AFM), and X-ray reflectometry (XRR). Since the total amount of water uptake in swollen PEMs is divided into two fractions, the void water and the swelling water, a correct evaluation of the odd even effect is only possible if both fractions are examined separately. In order to allow measuring samples over a larger thickness regime the investigation of a larger amount of samples is required. Therefore, the concept of separating void water from swelling water using neutron reflectometry is for the first time transferred to ellipsometry. The subsequent analysis of swelling water, void water, and roughness revealed the existence of two types of odd even effects: an odd even effect which addresses only the surface of the PEM (surface-odd even effect) and an odd even effect which addresses also the bulk of the PEM (bulk-odd even effect). The appearance of both effects is dependent on the environment; the surface-odd even effect is only detectable in humid air while the bulk-odd even effect is only detectable in liquid water. The bulk-odd even effect is related to the osmotic pressure between the PEM and the surrounding water. A correlation between the amount of void water and both odd even effects is not found. The amount of void water is independent of the terminated layer and the thickness of PEMs.}, language = {en} } @article{ZentelBehlNeheretal.2004, author = {Zentel, Rudolf and Behl, Marc and Neher, Dieter and Zen, Achmad and Lucht, Sylvia}, title = {Nanostructured polytriarylamines : orientation layers for polyfluorene}, issn = {0065-7727}, year = {2004}, language = {en} } @article{ZenichowskiNacciFoelschetal.2012, author = {Zenichowski, Karl and Nacci, Ch and F{\"o}lsch, S. and Dokic, Jadranka and Klamroth, Tillmann and Saalfrank, Peter}, title = {STM-switching of organic molecules on semiconductor surfaces: an above threshold density matrix model for 1,5 cyclooctadiene on Si(100)}, series = {Journal of physics : Condensed matter}, volume = {24}, journal = {Journal of physics : Condensed matter}, number = {39}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0953-8984}, doi = {10.1088/0953-8984/24/39/394009}, pages = {11}, year = {2012}, abstract = {The scanning tunnelling microscope (STM)-induced switching of a single cyclooctadiene molecule between two stable conformations chemisorbed on a Si(100) surface is investigated using an above threshold model including a neutral ground state and an ionic excited state potential. Switching was recently achieved experimentally with an STM operated at cryogenic temperatures (Nacci et al 2008 Phys. Rev. B 77 121405(R)) and rationalized by a below threshold model using just a single potential energy surface (Nacci et al 2009 Nano Lett. 9 2997). In the present paper, we show that experimental key findings on the inelastic electron tunnelling (IET) switching can also be rationalized using an above threshold density matrix model, which includes, in addition to the neutral ground state potential, an anionic or cationic excited potential. We use one and two-dimensional potential energy surfaces. Furthermore, the influence of two key parameters of the density matrix description, namely the electronic lifetime of the ionic resonance and the vibrational lifetimes, on the ground state potential are discussed.}, language = {en} } @article{ZenichowskiDokicKlamrothetal.2012, author = {Zenichowski, Karl and Dokic, Jadranka and Klamroth, Tillmann and Saalfrank, Peter}, title = {Current versus temperature-induced switching of a single molecule - open-system density matrix theory for 1,5-cyclooctadiene on Si(100)}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {136}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {9}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.3692229}, pages = {13}, year = {2012}, abstract = {The switching of single cyclooctadiene molecules chemisorbed on a Si(100) surface between two stable conformations, can be achieved with a scanning tunneling microscope [Nacci , Phys. Rev. B 77, 121405(R) (2008)]. Recently, it was shown by quantum chemical and quantum dynamical simulations that major experimental facts can be explained by a single-mode model with switching enforced by inelastic electron tunneling (IET) excitations and perturbed by vibrational relaxation [Nacci , Nano Lett. 9, 2997 (2009)]. In the present paper, we extend the previous theoretical work in several respects: (1) The model is generalized to a two-mode description in which two C2H4 units of COD can move independently; (2) contributions of dipole and, in addition, (cation and anion) resonance-IET rates are considered; (3) the harmonic-linear vibrational relaxation model used previously is generalized to anharmonic vibrations. While the present models highlight generic aspects of IET-switching between two potential minima, they also rationalize specific experimental findings for COD/Si(100): (1) A single-electron excitation mechanism with a linear dependence of the switching rate on tunneling current I, (2) the capability to switch both at negative and positive sample biases, and (3) a crossover temperature around similar to 60 K from an IET-driven, T-independent atom tunneling regime, to classical over-the-barrier isomerization with exponential T-dependence at higher temperatures for a bias voltage of +1.5 V and an average tunneling current of 0.73 nA.}, language = {en} } @phdthesis{Zenichowski2012, author = {Zenichowski, Karl}, title = {Quantum dynamical study of Si(100) surface-mounted, STM-driven switches at the atomic and molecular scale}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-62156}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {The aim of this thesis is the quantum dynamical study of two examples of scanning tunneling microscope (STM)-controllable, Si(100)(2x1) surface-mounted switches of atomic and molecular scale. The first example considers the switching of single H-atoms between two dangling-bond chemisorption sites on a Si-dimer of the Si(100) surface (Grey et al., 1996). The second system examines the conformational switching of single 1,5-cyclooctadiene molecules chemisorbed on the Si(100) surface (Nacci et al., 2008). The temporal dynamics are provided by the propagation of the density matrix in time via an according set of equations of motion (EQM). The latter are based on the open-system density matrix theory in Lindblad form. First order perturbation theory is used to evaluate those transition rates between vibrational levels of the system part. In order to account for interactions with the surface phonons, two different dissipative models are used, namely the bilinear, harmonic and the Ohmic bath model. IET-induced vibrational transitions in the system are due to the dipole- and the resonance-mechanism. A single surface approach is used to study the influence of dipole scattering and resonance scattering in the below-threshold regime. Further, a second electronic surface was included to study the resonance-induced switching in the above-threshold regime. Static properties of the adsorbate, e.g., potentials and dipole function and potentials, are obtained from quantum chemistry and used within the established quantum dynamical models.}, language = {en} }