@phdthesis{Zemanova2007, author = {Zemanov{\´a}, Lucia}, title = {Structure-function relationship in hierarchical model of brain networks}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-18400}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {The mammalian brain is, with its numerous neural elements and structured complex connectivity, one of the most complex systems in nature. Recently, large-scale corticocortical connectivities, both structural and functional, have received a great deal of research attention, especially using the approach of complex networks. Here, we try to shed some light on the relationship between structural and functional connectivities by studying synchronization dynamics in a realistic anatomical network of cat cortical connectivity. We model the cortical areas by a subnetwork of interacting excitable neurons (multilevel model) and by a neural mass model (population model). With weak couplings, the multilevel model displays biologically plausible dynamics and the synchronization patterns reveal a hierarchical cluster organization in the network structure. We can identify a group of brain areas involved in multifunctional tasks by comparing the dynamical clusters to the topological communities of the network. With strong couplings of multilevel model and by using neural mass model, the dynamics are characterized by well-defined oscillations. The synchronization patterns are mainly determined by the node intensity (total input strengths of a node); the detailed network topology is of secondary importance. The biologically improved multilevel model exhibits similar dynamical patterns in the two regimes. Thus, the study of synchronization in a multilevel complex network model of cortex can provide insights into the relationship between network topology and functional organization of complex brain networks.}, language = {en} } @phdthesis{Yeldesbay2014, author = {Yeldesbay, Azamat}, title = {Complex regimes of synchronization}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-73348}, school = {Universit{\"a}t Potsdam}, pages = {ii, 60}, year = {2014}, abstract = {Synchronization is a fundamental phenomenon in nature. It can be considered as a general property of self-sustained oscillators to adjust their rhythm in the presence of an interaction. In this work we investigate complex regimes of synchronization phenomena by means of theoretical analysis, numerical modeling, as well as practical analysis of experimental data. As a subject of our investigation we consider chimera state, where due to spontaneous symmetry-breaking of an initially homogeneous oscillators lattice split the system into two parts with different dynamics. Chimera state as a new synchronization phenomenon was first found in non-locally coupled oscillators system, and has attracted a lot of attention in the last decade. However, the recent studies indicate that this state is also possible in globally coupled systems. In the first part of this work, we show under which conditions the chimera-like state appears in a system of globally coupled identical oscillators with intrinsic delayed feedback. The results of the research explain how initially monostable oscillators became effectivly bistable in the presence of the coupling and create a mean field that sustain the coexistence of synchronized and desynchronized states. Also we discuss other examples, where chimera-like state appears due to frequency dependence of the phase shift in the bistable system. In the second part, we make further investigation of this topic by modeling influence of an external periodic force to an oscillator with intrinsic delayed feedback. We made stability analysis of the synchronized state and constructed Arnold tongues. The results explain formation of the chimera-like state and hysteric behavior of the synchronization area. Also, we consider two sets of parameters of the oscillator with symmetric and asymmetric Arnold tongues, that correspond to mono- and bi-stable regimes of the oscillator. In the third part, we demonstrate the results of the work, which was done in collaboration with our colleagues from Psychology Department of University of Potsdam. The project aimed to study the effect of the cardiac rhythm on human perception of time using synchronization analysis. From our part, we made a statistical analysis of the data obtained from the conducted experiment on free time interval reproduction task. We examined how ones heartbeat influences the time perception and searched for possible phase synchronization between heartbeat cycles and time reproduction responses. The findings support the prediction that cardiac cycles can serve as input signals, and is used for reproduction of time intervals in the range of several seconds.}, language = {en} } @article{VlasovKomarovPikovskij2015, author = {Vlasov, Vladimir and Komarov, Maxim and Pikovskij, Arkadij}, title = {Synchronization transitions in ensembles of noisy oscillators with bi-harmonic coupling}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {48}, journal = {Journal of physics : A, Mathematical and theoretical}, number = {10}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8113/48/10/105101}, pages = {16}, year = {2015}, abstract = {We describe synchronization transitions in an ensemble of globally coupled phase oscillators with a bi-harmonic coupling function, and two sources of disorder-diversity of the intrinsic oscillators' frequencies, and external independent noise forces. Based on the self-consistent formulation, we derive analytic solutions for different synchronous states. We report on various non-trivial transitions from incoherence to synchrony, with the following possible scenarios: simple supercritical transition (similar to classical Kuramoto model); subcritical transition with large area of bistability of incoherent and synchronous solutions; appearance of a symmetric two-cluster solution which can coexist with the regular synchronous state. We show that the interplay between relatively small white noise and finite-size fluctuations can lead to metastability of the asynchronous solution.}, language = {en} } @phdthesis{Vlasov2015, author = {Vlasov, Vladimir}, title = {Synchronization of oscillatory networks in terms of global variables}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-78182}, school = {Universit{\"a}t Potsdam}, pages = {82}, year = {2015}, abstract = {Synchronization of large ensembles of oscillators is an omnipresent phenomenon observed in different fields of science like physics, engineering, life sciences, etc. The most simple setup is that of globally coupled phase oscillators, where all the oscillators contribute to a global field which acts on all oscillators. This formulation of the problem was pioneered by Winfree and Kuramoto. Such a setup gives a possibility for the analysis of these systems in terms of global variables. In this work we describe nontrivial collective dynamics in oscillator populations coupled via mean fields in terms of global variables. We consider problems which cannot be directly reduced to standard Kuramoto and Winfree models. In the first part of the thesis we adopt a method introduced by Watanabe and Strogatz. The main idea is that the system of identical oscillators of particular type can be described by a low-dimensional system of global equations. This approach enables us to perform a complete analytical analysis for a special but vast set of initial conditions. Furthermore, we show how the approach can be expanded for some nonidentical systems. We apply the Watanabe-Strogatz approach to arrays of Josephson junctions and systems of identical phase oscillators with leader-type coupling. In the next parts of the thesis we consider the self-consistent mean-field theory method that can be applied to general nonidentical globally coupled systems of oscillators both with or without noise. For considered systems a regime, where the global field rotates uniformly, is the most important one. With the help of this approach such solutions of the self-consistency equation for an arbitrary distribution of frequencies and coupling parameters can be found analytically in the parametric form, both for noise-free and noisy cases. We apply this method to deterministic Kuramoto-type model with generic coupling and an ensemble of spatially distributed oscillators with leader-type coupling. Furthermore, with the proposed self-consistent approach we fully characterize rotating wave solutions of noisy Kuramoto-type model with generic coupling and an ensemble of noisy oscillators with bi-harmonic coupling. Whenever possible, a complete analysis of global dynamics is performed and compared with direct numerical simulations of large populations.}, language = {en} } @article{vanVelzenThieserBerendonketal.2018, author = {van Velzen, Ellen and Thieser, Tamara and Berendonk, Thomas U. and Weitere, Markus and Gaedke, Ursula}, title = {Inducible defense destabilizes predator-prey dynamics}, series = {Oikos}, volume = {127}, journal = {Oikos}, number = {11}, publisher = {Wiley}, address = {Hoboken}, issn = {0030-1299}, doi = {10.1111/oik.04868}, pages = {1551 -- 1562}, year = {2018}, abstract = {Phenotypic plasticity in prey can have a dramatic impact on predator-prey dynamics, e.g. by inducible defense against temporally varying levels of predation. Previous work has overwhelmingly shown that this effect is stabilizing: inducible defenses dampen the amplitudes of population oscillations or eliminate them altogether. However, such studies have neglected scenarios where being protected against one predator increases vulnerability to another (incompatible defense). Here we develop a model for such a scenario, using two distinct prey phenotypes and two predator species. Each prey phenotype is defended against one of the predators, and vulnerable to the other. In strong contrast with previous studies on the dynamic effects of plasticity involving a single predator, we find that increasing the level of plasticity consistently destabilizes the system, as measured by the amplitude of oscillations and the coefficients of variation of both total prey and total predator biomasses. We explain this unexpected and seemingly counterintuitive result by showing that plasticity causes synchronization between the two prey phenotypes (and, through this, between the predators), thus increasing the temporal variability in biomass dynamics. These results challenge the common view that plasticity should always have a stabilizing effect on biomass dynamics: adding a single predator-prey interaction to an established model structure gives rise to a system where different mechanisms may be at play, leading to dramatically different outcomes.}, language = {en} } @phdthesis{Toenjes2007, author = {T{\"o}njes, Ralf}, title = {Pattern formation through synchronization in systems of nonidentical autonomous oscillators}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-15973}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {This work is concerned with the spatio-temporal structures that emerge when non-identical, diffusively coupled oscillators synchronize. It contains analytical results and their confirmation through extensive computer simulations. We use the Kuramoto model which reduces general oscillatory systems to phase dynamics. The symmetry of the coupling plays an important role for the formation of patterns. We have studied the ordering influence of an asymmetry (non-isochronicity) in the phase coupling function on the phase profile in synchronization and the intricate interplay between this asymmetry and the frequency heterogeneity in the system. The thesis is divided into three main parts. Chapter 2 and 3 introduce the basic model of Kuramoto and conditions for stable synchronization. In Chapter 4 we characterize the phase profiles in synchronization for various special cases and in an exponential approximation of the phase coupling function, which allows for an analytical treatment. Finally, in the third part (Chapter 5) we study the influence of non-isochronicity on the synchronization frequency in continuous, reaction diffusion systems and discrete networks of oscillators.}, language = {en} } @phdthesis{Topaj2001, author = {Topaj, Dmitri}, title = {Synchronization transitions in complex systems}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0000367}, school = {Universit{\"a}t Potsdam}, year = {2001}, abstract = {Gegenstand dieser Arbeit ist die Untersuchung generischer Synchronisierungsph{\"a}nomene in interagierenden komplexen Systemen. Diese Ph{\"a}nomene werden u.a. in gekoppelten deterministischen chaotischen Systemen beobachtet. Bei sehr schwachen Interaktionen zwischen individuellen Systemen kann ein {\"U}bergang zum schwach koh{\"a}renten Verhalten der Systeme stattfinden. In gekoppelten zeitkontinuierlichen chaotischen Systemen manifestiert sich dieser {\"U}bergang durch den Effekt der Phasensynchronisierung, in gekoppelten chaotischen zeitdiskreten Systemen durch den Effekt eines nichtverschwindenden makroskopischen Feldes. Der {\"U}bergang zur Koh{\"a}renz in einer Kette lokal gekoppelter Oszillatoren, beschrieben durch Phasengleichungen, wird im Bezug auf die Symmetrien des Systems untersucht. Es wird gezeigt, daß die durch die Symmetrien verursachte Reversibilit{\"a}t des Systems nichttriviale topologische Eigenschaften der Trajektorien bedingt, so daß das als dissipativ konstruierte System in einem ganzen Parameterbereich quasi-Hamiltonische Z{\"u}ge aufweist, d.h. das Phasenvolumen ist im Schnitt erhalten, und die Lyapunov-Exponenten sind paarweise symmetrisch. Der {\"U}bergang zur Koh{\"a}renz in einem Ensemble global gekoppelter chaotischer Abbildungen wird durch den Verlust der Stabilit{\"a}t des entkoppelten Zustandes beschrieben. Die entwickelte Methode besteht darin, die Selbstkonsistenz des makroskopischen Feldes aufzuheben, und das Ensemble in Analogie mit einem Verst{\"a}rkerschaltkreis mit R{\"u}ckkopplung durch eine komplexe lineare {\"U}bertragungssfunktion zu charakterisieren. Diese Theorie wird anschließend f{\"u}r einige theoretisch interessanten F{\"a}lle verallgemeinert.}, language = {en} } @book{SchreiberKrahnIngallsetal.2016, author = {Schreiber, Robin and Krahn, Robert and Ingalls, Daniel H. H. and Hirschfeld, Robert}, title = {Transmorphic}, number = {110}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-387-9}, issn = {1613-5652}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-98300}, publisher = {Universit{\"a}t Potsdam}, pages = {100}, year = {2016}, abstract = {Defining Graphical User Interfaces (GUIs) through functional abstractions can reduce the complexity that arises from mutable abstractions. Recent examples, such as Facebook's React GUI framework have shown, how modelling the view as a functional projection from the application state to a visual representation can reduce the number of interacting objects and thus help to improve the reliabiliy of the system. This however comes at the price of a more rigid, functional framework where programmers are forced to express visual entities with functional abstractions, detached from the way one intuitively thinks about the physical world. In contrast to that, the GUI Framework Morphic allows interactions in the graphical domain, such as grabbing, dragging or resizing of elements to evolve an application at runtime, providing liveness and directness in the development workflow. Modelling each visual entity through mutable abstractions however makes it difficult to ensure correctness when GUIs start to grow more complex. Furthermore, by evolving morphs at runtime through direct manipulation we diverge more and more from the symbolic description that corresponds to the morph. Given that both of these approaches have their merits and problems, is there a way to combine them in a meaningful way that preserves their respective benefits? As a solution for this problem, we propose to lift Morphic's concept of direct manipulation from the mutation of state to the transformation of source code. In particular, we will explore the design, implementation and integration of a bidirectional mapping between the graphical representation and a functional and declarative symbolic description of a graphical user interface within a self hosted development environment. We will present Transmorphic, a functional take on the Morphic GUI Framework, where the visual and structural properties of morphs are defined in a purely functional, declarative fashion. In Transmorphic, the developer is able to assemble different morphs at runtime through direct manipulation which is automatically translated into changes in the code of the application. In this way, the comprehensiveness and predictability of direct manipulation can be used in the context of a purely functional GUI, while the effects of the manipulation are reflected in a medium that is always in reach for the programmer and can even be used to incorporate the source transformations into the source files of the application.}, language = {en} } @misc{SchaeferBittmann2021, author = {Schaefer, Laura and Bittmann, Frank}, title = {Paired personal interaction reveals objective differences between pushing and holding isometric muscle action}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {714}, issn = {1866-8364}, doi = {10.25932/publishup-51911}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-519119}, pages = {23}, year = {2021}, abstract = {In sports and movement sciences isometric muscle function is usually measured by pushing against a stable resistance. However, subjectively one can hold or push isometrically. Several investigations suggest a distinction of those forms. The aim of this study was to investigate whether these two forms of isometric muscle action can be distinguished by objective parameters in an interpersonal setting. 20 subjects were grouped in 10 same sex pairs, in which one partner should perform the pushing isometric muscle action (PIMA) and the other partner executed the holding isometric muscle action (HIMA). The partners had contact at the distal forearms via an interface, which included a strain gauge and an acceleration sensor. The mechanical oscillations of the triceps brachii (MMGtri) muscle, its tendon (MTGtri) and the abdominal muscle (MMGobl) were recorded by a piezoelectric-sensor-based measurement system. Each partner performed three 15s (80\% MVIC) and two fatiguing trials (90\% MVIC) during PIMA and HIMA, respectively. Parameters to compare PIMA and HIMA were the mean frequency, the normalized mean amplitude, the amplitude variation, the power in the frequency range of 8 to 15 Hz, a special power-frequency ratio and the number of task failures during HIMA or PIMA (partner who quit the task). A "HIMA failure" occurred in 85\% of trials (p < 0.001). No significant differences between PIMA and HIMA were found for the mean frequency and normalized amplitude. The MMGobl showed significantly higher values of amplitude variation (15s: p = 0.013; fatiguing: p = 0.007) and of power-frequency-ratio (15s: p = 0.040; fatiguing: p = 0.002) during HIMA and a higher power in the range of 8 to 15 Hz during PIMA (15s: p = 0.001; fatiguing: p = 0.011). MMGtri and MTGtri showed no significant differences. Based on the findings it is suggested that a holding and a pushing isometric muscle action can be distinguished objectively, whereby a more complex neural control is assumed for HIMA.}, language = {en} } @article{SchaeferBittmann2021, author = {Schaefer, Laura and Bittmann, Frank}, title = {Paired personal interaction reveals objective differences between pushing and holding isometric muscle action}, series = {PLOS One}, volume = {16}, journal = {PLOS One}, number = {5}, publisher = {PLOS}, address = {San Francisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0238331}, pages = {21}, year = {2021}, abstract = {In sports and movement sciences isometric muscle function is usually measured by pushing against a stable resistance. However, subjectively one can hold or push isometrically. Several investigations suggest a distinction of those forms. The aim of this study was to investigate whether these two forms of isometric muscle action can be distinguished by objective parameters in an interpersonal setting. 20 subjects were grouped in 10 same sex pairs, in which one partner should perform the pushing isometric muscle action (PIMA) and the other partner executed the holding isometric muscle action (HIMA). The partners had contact at the distal forearms via an interface, which included a strain gauge and an acceleration sensor. The mechanical oscillations of the triceps brachii (MMGtri) muscle, its tendon (MTGtri) and the abdominal muscle (MMGobl) were recorded by a piezoelectric-sensor-based measurement system. Each partner performed three 15s (80\% MVIC) and two fatiguing trials (90\% MVIC) during PIMA and HIMA, respectively. Parameters to compare PIMA and HIMA were the mean frequency, the normalized mean amplitude, the amplitude variation, the power in the frequency range of 8 to 15 Hz, a special power-frequency ratio and the number of task failures during HIMA or PIMA (partner who quit the task). A "HIMA failure" occurred in 85\% of trials (p < 0.001). No significant differences between PIMA and HIMA were found for the mean frequency and normalized amplitude. The MMGobl showed significantly higher values of amplitude variation (15s: p = 0.013; fatiguing: p = 0.007) and of power-frequency-ratio (15s: p = 0.040; fatiguing: p = 0.002) during HIMA and a higher power in the range of 8 to 15 Hz during PIMA (15s: p = 0.001; fatiguing: p = 0.011). MMGtri and MTGtri showed no significant differences. Based on the findings it is suggested that a holding and a pushing isometric muscle action can be distinguished objectively, whereby a more complex neural control is assumed for HIMA.}, language = {en} }