@phdthesis{Muench2018, author = {M{\"u}nch, Thomas}, title = {Interpretation of temperature signals from ice cores}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-414963}, school = {Universit{\"a}t Potsdam}, pages = {xxi, 197}, year = {2018}, abstract = {Earth's climate varies continuously across space and time, but humankind has witnessed only a small snapshot of its entire history, and instrumentally documented it for a mere 200 years. Our knowledge of past climate changes is therefore almost exclusively based on indirect proxy data, i.e. on indicators which are sensitive to changes in climatic variables and stored in environmental archives. Extracting the data from these archives allows retrieval of the information from earlier times. Obtaining accurate proxy information is a key means to test model predictions of the past climate, and only after such validation can the models be used to reliably forecast future changes in our warming world. The polar ice sheets of Greenland and Antarctica are one major climate archive, which record information about local air temperatures by means of the isotopic composition of the water molecules embedded in the ice. However, this temperature proxy is, as any indirect climate data, not a perfect recorder of past climatic variations. Apart from local air temperatures, a multitude of other processes affect the mean and variability of the isotopic data, which hinders their direct interpretation in terms of climate variations. This applies especially to regions with little annual accumulation of snow, such as the Antarctic Plateau. While these areas in principle allow for the extraction of isotope records reaching far back in time, a strong corruption of the temperature signal originally encoded in the isotopic data of the snow is expected. This dissertation uses observational isotope data from Antarctica, focussing especially on the East Antarctic low-accumulation area around the Kohnen Station ice-core drilling site, together with statistical and physical methods, to improve our understanding of the spatial and temporal isotope variability across different scales, and thus to enhance the applicability of the proxy for estimating past temperature variability. The presented results lead to a quantitative explanation of the local-scale (1-500 m) spatial variability in the form of a statistical noise model, and reveal the main source of the temporal variability to be the mixture of a climatic seasonal cycle in temperature and the effect of diffusional smoothing acting on temporally uncorrelated noise. These findings put significant limits on the representativity of single isotope records in terms of local air temperature, and impact the interpretation of apparent cyclicalities in the records. Furthermore, to extend the analyses to larger scales, the timescale-dependency of observed Holocene isotope variability is studied. This offers a deeper understanding of the nature of the variations, and is crucial for unravelling the embedded true temperature variability over a wide range of timescales.}, language = {en} } @phdthesis{Castino2016, author = {Castino, Fabiana}, title = {Climate variability and extreme hydro-meteorological events in the Southern Central Andes, NW Argentina}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-396815}, school = {Universit{\"a}t Potsdam}, pages = {xi, 144}, year = {2016}, abstract = {Extreme hydro-meteorological events, such as severe droughts or heavy rainstorms, constitute primary manifestations of climate variability and exert a critical impact on the natural environment and human society. This is particularly true for high-mountain areas, such as the eastern flank of the southern Central Andes of NW Argentina, a region impacted by deep convection processes that form the basis of extreme events, often resulting in floods, a variety of mass movements, and hillslope processes. This region is characterized by pronounced E-W gradients in topography, precipitation, and vegetation cover, spanning low to medium-elevation, humid and densely vegetated areas to high-elevation, arid and sparsely vegetated environments. This strong E-W gradient is mirrored by differences in the efficiency of surface processes, which mobilize and transport large amounts of sediment through the fluvial system, from the steep hillslopes to the intermontane basins and further to the foreland. In a highly sensitive high-mountain environment like this, even small changes in the spatiotemporal distribution, magnitude and rates of extreme events may strongly impact environmental conditions, anthropogenic activity, and the well-being of mountain communities and beyond. However, although the NW Argentine Andes comprise the catchments for the La Plata river that traverses one of the most populated and economically relevant areas of South America, there are only few detailed investigations of climate variability and extreme hydro-meteorological events. In this thesis, I focus on deciphering the spatiotemporal variability of rainfall and river discharge, with particular emphasis on extreme hydro-meteorological events in the subtropical southern Central Andes of NW Argentina during the past seven decades. I employ various methods to assess and quantify statistically significant trend patterns of rainfall and river discharge, integrating high-quality daily time series from gauging stations (40 rainfall and 8 river discharge stations) with gridded datasets (CPC-uni and TRMM 3B42 V7), for the period between 1940 and 2015. Evidence for a general intensification of the hydrological cycle at intermediate elevations (~ 0.5 - 3 km asl) at the eastern flank of the southern Central Andes is found both from rainfall and river-discharge time-series analysis during the period from 1940 to 2015. This intensification is associated with the increase of the annual total amount of rainfall and the mean annual discharge. However, most pronounced trends are found at high percentiles, i.e. extreme hydro-meteorological events, particularly during the wet season from December to February.An important outcome of my studies is the recognition of a rapid increase in the amount of river discharge during the period between 1971 and 1977, most likely linked to the 1976-77 global climate shift, which is associated with the North Pacific Ocean sea surface temperature variability. Interestingly, after this rapid increase, both rainfall and river discharge decreased at low and intermediate elevations along the eastern flank of the Andes. In contrast, during the same time interval, at high elevations, extensive areas on the arid Puna de Atacama plateau have recorded increasing annual rainfall totals. This has been associated with more intense extreme hydro-meteorological events from 1979 to 2014. This part of the study reveals that low-, intermediate, and high-elevation sectors in the Andes of NW Argentina respond differently to changing climate conditions. Possible forcing mechanisms of the pronounced hydro-meteorological variability observed in the study area are also investigated. For the period between 1940 and 2015, I analyzed modes of oscillation of river discharge from small to medium drainage basins (102 to 104 km2), located on the eastern flank of the orogen. First, I decomposed the relevant monthly time series using the Hilbert-Huang Transform, which is particularly appropriate for non-stationary time series that result from non-linear natural processes. I observed that in the study region discharge variability can be described by five quasi-periodic oscillatory modes on timescales varying from 1 to ~20 years. Secondly, I tested the link between river-discharge variations and large-scale climate modes of variability, using different climate indices, such as the BEST ENSO (Bivariate El Ni{\~n}o-Southern Oscillation Time-series) index. This analysis reveals that, although most of the variance on the annual timescale is associated with the South American Monsoon System, a relatively large part of river-discharge variability is linked to Pacific Ocean variability (PDO phases) at multi-decadal timescales (~20 years). To a lesser degree, river discharge variability is also linked to the Tropical South Atlantic (TSA) sea surface temperature anomaly at multi-annual timescales (~2-5 years). Taken together, these findings exemplify the high degree of sensitivity of high-mountain environments with respect to climatic variability and change. This is particularly true for the topographic transitions between the humid, low-moderate elevations and the semi-arid to arid highlands of the southern Central Andes. Even subtle changes in the hydro-meteorological regime of these areas of the mountain belt react with major impacts on erosional hillslope processes and generate mass movements that fundamentally impact the transport capacity of mountain streams. Despite more severe storms in these areas, the fluvial system is characterized by pronounced variability of the stream power on different timescales, leading to cycles of sediment aggradation, the loss of agriculturally used land and severe impacts on infrastructure.}, language = {en} }