@article{BuljakBruno2018, author = {Buljak, Vladimir and Bruno, Giovanni}, title = {Numerical modeling of thermally induced microcracking in porous ceramics}, series = {Journal of the European Ceramic Society}, volume = {38}, journal = {Journal of the European Ceramic Society}, number = {11}, publisher = {Elsevier}, address = {Oxford}, issn = {0955-2219}, doi = {10.1016/j.jeurceramsoc.2018.03.041}, pages = {4099 -- 4108}, year = {2018}, abstract = {A numerical framework is developed to study the hysteresis of elastic properties of porous ceramics as a function of temperature. The developed numerical model is capable of employing experimentally measured crystallographic orientation distribution and coefficient of thermal expansion values. For realistic modeling of the microstructure, Voronoi polygons are used to generate polycrystalline grains. Some grains are considered as voids, to simulate the material porosity. To model intercrystalline cracking, cohesive elements are inserted along grain boundaries. Crack healing (recovery of the initial properties) upon closure is taken into account with special cohesive elements implemented in the commercial code ABAQUS. The numerical model can be used to estimate fracture properties governing the cohesive behavior through inverse analysis procedure. The model is applied to a porous cordierite ceramic. The obtained fracture properties are further used to successfully simulate general non-linear macroscopic stress-strain curves of cordierite, thereby validating the model.}, language = {en} } @article{BrunoVogel2017, author = {Bruno, Giovanni and Vogel, Sven C.}, title = {Simultaneous determination of high-temperature crystal structure and texture of synthetic porous cordierite}, series = {Journal of applied crystallography}, volume = {50}, journal = {Journal of applied crystallography}, publisher = {International Union of Crystallography}, address = {Chester}, issn = {1600-5767}, doi = {10.1107/S160057671700406X}, pages = {749 -- 762}, year = {2017}, abstract = {The evolution of the crystal structure and crystallographic texture of porous synthetic cordierite was studied by in situ high-temperature neutron diffraction up to 1373 K, providing the first in situ high-temperature texture measurement of this technologically important material. It was observed that the crystal texture slightly weakens with increasing temperature, concurrently with subtle changes in the crystal structure. These changes are in agreement with previous work, leading the authors to the conclusion that high-temperature neutron diffraction allows reliable crystallographic characterization of materials with moderate texture. It was also observed that structural changes occur at about the glass transition temperature of the cordierite glass (between 973 and 1073 K). Crystal structure refinements were conducted with and without quantitative texture analysis being part of the Rietveld refinement, and a critical comparison of the results is presented, contributing to the sparse body of literature on combined texture and crystal structure refinements.}, language = {en} } @article{BrunoKachanovSevostianovetal.2018, author = {Bruno, Giovanni and Kachanov, Mark and Sevostianov, Igor and Shyam, Amit}, title = {Micromechanical modeling of non-linear stress-strain behavior of polycrystalline microcracked materials under tension}, series = {Acta materialia}, volume = {164}, journal = {Acta materialia}, publisher = {Elsevier}, address = {Oxford}, issn = {1359-6454}, doi = {10.1016/j.actamat.2018.10.024}, pages = {50 -- 59}, year = {2018}, abstract = {The stress-strain behavior of microcracked polycrystalline materials (such as ceramics or rocks) under conditions of tensile, displacement-controlled, loading is discussed. Micromechanical explanation and modeling of the basic features, such as non-linearity and hysteresis in stress-strain curves, is developed, with stable microcrack propagation and "roughness" of intergranular cracks playing critical roles. Experiments involving complex loading histories were done on large- and medium grain size beta-eucryptite ceramic. The model is shown to reproduce the basic features of the observed stress-strain curves. (C) 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.}, language = {en} }