@article{WangSenoSokolovetal.2020, author = {Wang, Wei and Seno, Flavio and Sokolov, Igor M. and Chechkin, Aleksei V. and Metzler, Ralf}, title = {Unexpected crossovers in correlated random-diffusivity processes}, series = {New Journal of Physics}, volume = {22}, journal = {New Journal of Physics}, publisher = {Dt. Physikalische Ges.}, address = {Bad Honnef}, issn = {1367-2630}, doi = {10.1088/1367-2630/aba390}, pages = {17}, year = {2020}, abstract = {The passive and active motion of micron-sized tracer particles in crowded liquids and inside living biological cells is ubiquitously characterised by 'viscoelastic' anomalous diffusion, in which the increments of the motion feature long-ranged negative and positive correlations. While viscoelastic anomalous diffusion is typically modelled by a Gaussian process with correlated increments, so-called fractional Gaussian noise, an increasing number of systems are reported, in which viscoelastic anomalous diffusion is paired with non-Gaussian displacement distributions. Following recent advances in Brownian yet non-Gaussian diffusion we here introduce and discuss several possible versions of random-diffusivity models with long-ranged correlations. While all these models show a crossover from non-Gaussian to Gaussian distributions beyond some correlation time, their mean squared displacements exhibit strikingly different behaviours: depending on the model crossovers from anomalous to normal diffusion are observed, as well as a priori unexpected dependencies of the effective diffusion coefficient on the correlation exponent. Our observations of the non-universality of random-diffusivity viscoelastic anomalous diffusion are important for the analysis of experiments and a better understanding of the physical origins of 'viscoelastic yet non-Gaussian' diffusion.}, language = {en} } @misc{WangSenoSokolovetal.2020, author = {Wang, Wei and Seno, Flavio and Sokolov, Igor M. and Chechkin, Aleksei V. and Metzler, Ralf}, title = {Unexpected crossovers in correlated random-diffusivity processes}, number = {1006}, issn = {1866-8372}, doi = {10.25932/publishup-48004}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-480049}, pages = {18}, year = {2020}, abstract = {The passive and active motion of micron-sized tracer particles in crowded liquids and inside living biological cells is ubiquitously characterised by 'viscoelastic' anomalous diffusion, in which the increments of the motion feature long-ranged negative and positive correlations. While viscoelastic anomalous diffusion is typically modelled by a Gaussian process with correlated increments, so-called fractional Gaussian noise, an increasing number of systems are reported, in which viscoelastic anomalous diffusion is paired with non-Gaussian displacement distributions. Following recent advances in Brownian yet non-Gaussian diffusion we here introduce and discuss several possible versions of random-diffusivity models with long-ranged correlations. While all these models show a crossover from non-Gaussian to Gaussian distributions beyond some correlation time, their mean squared displacements exhibit strikingly different behaviours: depending on the model crossovers from anomalous to normal diffusion are observed, as well as a priori unexpected dependencies of the effective diffusion coefficient on the correlation exponent. Our observations of the non-universality of random-diffusivity viscoelastic anomalous diffusion are important for the analysis of experiments and a better understanding of the physical origins of 'viscoelastic yet non-Gaussian' diffusion.}, language = {en} } @article{SposiniGrebenkovMetzleretal.2020, author = {Sposini, Vittoria and Grebenkov, Denis S. and Metzler, Ralf and Oshanin, Gleb and Seno, Flavio}, title = {Universal spectral features of different classes of random-diffusivity processes}, series = {New Journal of Physics}, volume = {22}, journal = {New Journal of Physics}, number = {6}, publisher = {Dt. Physikalische Ges.}, address = {Bad Honnef}, issn = {1367-2630}, doi = {10.1088/1367-2630/ab9200}, pages = {26}, year = {2020}, abstract = {Stochastic models based on random diffusivities, such as the diffusing-diffusivity approach, are popular concepts for the description of non-Gaussian diffusion in heterogeneous media. Studies of these models typically focus on the moments and the displacement probability density function. Here we develop the complementary power spectral description for a broad class of random-diffusivity processes. In our approach we cater for typical single particle tracking data in which a small number of trajectories with finite duration are garnered. Apart from the diffusing-diffusivity model we study a range of previously unconsidered random-diffusivity processes, for which we obtain exact forms of the probability density function. These new processes are different versions of jump processes as well as functionals of Brownian motion. The resulting behaviour subtly depends on the specific model details. Thus, the central part of the probability density function may be Gaussian or non-Gaussian, and the tails may assume Gaussian, exponential, log-normal, or even power-law forms. For all these models we derive analytically the moment-generating function for the single-trajectory power spectral density. We establish the generic 1/f²-scaling of the power spectral density as function of frequency in all cases. Moreover, we establish the probability density for the amplitudes of the random power spectral density of individual trajectories. The latter functions reflect the very specific properties of the different random-diffusivity models considered here. Our exact results are in excellent agreement with extensive numerical simulations.}, language = {en} } @misc{SposiniGrebenkovMetzleretal.2020, author = {Sposini, Vittoria and Grebenkov, Denis S. and Metzler, Ralf and Oshanin, Gleb and Seno, Flavio}, title = {Universal spectral features of different classes of random-diffusivity processes}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {999}, issn = {1866-8372}, doi = {10.25932/publishup-47696}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-476960}, pages = {27}, year = {2020}, abstract = {Stochastic models based on random diffusivities, such as the diffusing-diffusivity approach, are popular concepts for the description of non-Gaussian diffusion in heterogeneous media. Studies of these models typically focus on the moments and the displacement probability density function. Here we develop the complementary power spectral description for a broad class of random-diffusivity processes. In our approach we cater for typical single particle tracking data in which a small number of trajectories with finite duration are garnered. Apart from the diffusing-diffusivity model we study a range of previously unconsidered random-diffusivity processes, for which we obtain exact forms of the probability density function. These new processes are different versions of jump processes as well as functionals of Brownian motion. The resulting behaviour subtly depends on the specific model details. Thus, the central part of the probability density function may be Gaussian or non-Gaussian, and the tails may assume Gaussian, exponential, log-normal, or even power-law forms. For all these models we derive analytically the moment-generating function for the single-trajectory power spectral density. We establish the generic 1/f²-scaling of the power spectral density as function of frequency in all cases. Moreover, we establish the probability density for the amplitudes of the random power spectral density of individual trajectories. The latter functions reflect the very specific properties of the different random-diffusivity models considered here. Our exact results are in excellent agreement with extensive numerical simulations.}, language = {en} } @article{SinghMetzlerSandev2020, author = {Singh, Rishu Kumar and Metzler, Ralf and Sandev, Trifce}, title = {Resetting dynamics in a confining potential}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {53}, journal = {Journal of physics : A, Mathematical and theoretical}, number = {50}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8121/abc83a}, pages = {28}, year = {2020}, abstract = {We study Brownian motion in a confining potential under a constant-rate resetting to a reset position x(0). The relaxation of this system to the steady-state exhibits a dynamic phase transition, and is achieved in a light cone region which grows linearly with time. When an absorbing boundary is introduced, effecting a symmetry breaking of the system, we find that resetting aids the barrier escape only when the particle starts on the same side as the barrier with respect to the origin. We find that the optimal resetting rate exhibits a continuous phase transition with critical exponent of unity. Exact expressions are derived for the mean escape time, the second moment, and the coefficient of variation (CV).}, language = {en} } @misc{LiMeiXuetal.2020, author = {Li, Yongge and Mei, Ruoxing and Xu, Yong and Kurths, J{\"u}rgen and Duan, Jinqiao and Metzler, Ralf}, title = {Particle dynamics and transport enhancement in a confined channel with position-dependent diffusivity}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {974}, issn = {1866-8372}, doi = {10.25932/publishup-47454}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-474542}, pages = {28}, year = {2020}, abstract = {This work focuses on the dynamics of particles in a confined geometry with position-dependent diffusivity, where the confinement is modelled by a periodic channel consisting of unit cells connected by narrow passage ways. We consider three functional forms for the diffusivity, corresponding to the scenarios of a constant (D ₀), as well as a low (D ₘ) and a high (D d) mobility diffusion in cell centre of the longitudinally symmetric cells. Due to the interaction among the diffusivity, channel shape and external force, the system exhibits complex and interesting phenomena. By calculating the probability density function, mean velocity and mean first exit time with the It{\^o} calculus form, we find that in the absence of external forces the diffusivity D d will redistribute particles near the channel wall, while the diffusivity D ₘ will trap them near the cell centre. The superposition of external forces will break their static distributions. Besides, our results demonstrate that for the diffusivity D d, a high dependence on the x coordinate (parallel with the central channel line) will improve the mean velocity of the particles. In contrast, for the diffusivity D ₘ, a weak dependence on the x coordinate will dramatically accelerate the moving speed. In addition, it shows that a large external force can weaken the influences of different diffusivities; inversely, for a small external force, the types of diffusivity affect significantly the particle dynamics. In practice, one can apply these results to achieve a prominent enhancement of the particle transport in two- or three-dimensional channels by modulating the local tracer diffusivity via an engineered gel of varying porosity or by adding a cold tube to cool down the diffusivity along the central line, which may be a relevant effect in engineering applications. Effects of different stochastic calculi in the evaluation of the underlying multiplicative stochastic equation for different physical scenarios are discussed.}, language = {en} } @article{LiMeiXuetal.2020, author = {Li, Yongge and Mei, Ruoxing and Xu, Yong and Kurths, J{\"u}rgen and Duan, Jinqiao and Metzler, Ralf}, title = {Particle dynamics and transport enhancement in a confined channel with position-dependent diffusivity}, series = {New Journal of Physics}, volume = {22}, journal = {New Journal of Physics}, publisher = {Dt. Physikalische Ges.}, address = {Bad Honnef}, issn = {1367-2630}, doi = {10.1088/1367-2630/ab81b9}, pages = {27}, year = {2020}, abstract = {This work focuses on the dynamics of particles in a confined geometry with position-dependent diffusivity, where the confinement is modelled by a periodic channel consisting of unit cells connected by narrow passage ways. We consider three functional forms for the diffusivity, corresponding to the scenarios of a constant (D ₀), as well as a low (D ₘ) and a high (D d) mobility diffusion in cell centre of the longitudinally symmetric cells. Due to the interaction among the diffusivity, channel shape and external force, the system exhibits complex and interesting phenomena. By calculating the probability density function, mean velocity and mean first exit time with the It{\^o} calculus form, we find that in the absence of external forces the diffusivity D d will redistribute particles near the channel wall, while the diffusivity D ₘ will trap them near the cell centre. The superposition of external forces will break their static distributions. Besides, our results demonstrate that for the diffusivity D d, a high dependence on the x coordinate (parallel with the central channel line) will improve the mean velocity of the particles. In contrast, for the diffusivity D ₘ, a weak dependence on the x coordinate will dramatically accelerate the moving speed. In addition, it shows that a large external force can weaken the influences of different diffusivities; inversely, for a small external force, the types of diffusivity affect significantly the particle dynamics. In practice, one can apply these results to achieve a prominent enhancement of the particle transport in two- or three-dimensional channels by modulating the local tracer diffusivity via an engineered gel of varying porosity or by adding a cold tube to cool down the diffusivity along the central line, which may be a relevant effect in engineering applications. Effects of different stochastic calculi in the evaluation of the underlying multiplicative stochastic equation for different physical scenarios are discussed.}, language = {en} } @article{GrebenkovSposiniMetzleretal.2020, author = {Grebenkov, Denis S. and Sposini, Vittoria and Metzler, Ralf and Oshanin, Gleb and Seno, Flavio}, title = {Exact distributions of the maximum and range of random diffusivity processes}, series = {New Journal of Physics}, volume = {23}, journal = {New Journal of Physics}, publisher = {Dt. Physikalische Ges.}, address = {Bad Honnef}, issn = {1367-2630}, doi = {10.1088/1367-2630/abd313}, pages = {23}, year = {2020}, abstract = {We study the extremal properties of a stochastic process xt defined by the Langevin equation ẋₜ =√2Dₜ ξₜ, in which ξt is a Gaussian white noise with zero mean and Dₜ is a stochastic'diffusivity', defined as a functional of independent Brownian motion Bₜ.We focus on threechoices for the random diffusivity Dₜ: cut-off Brownian motion, Dₜt ∼ Θ(Bₜ), where Θ(x) is the Heaviside step function; geometric Brownian motion, Dₜ ∼ exp(-Bₜ); and a superdiffusive process based on squared Brownian motion, Dₜ ∼ B²ₜ. For these cases we derive exact expressions for the probability density functions of the maximal positive displacement and of the range of the process xₜ on the time interval ₜ ∈ (0, T).We discuss the asymptotic behaviours of the associated probability density functions, compare these against the behaviour of the corresponding properties of standard Brownian motion with constant diffusivity (Dₜ = D0) and also analyse the typical behaviour of the probability density functions which is observed for a majority of realisations of the stochastic diffusivity process.}, language = {en} } @misc{GrebenkovSposiniMetzleretal.2020, author = {Grebenkov, Denis S. and Sposini, Vittoria and Metzler, Ralf and Oshanin, Gleb and Seno, Flavio}, title = {Exact distributions of the maximum and range of random diffusivity processes}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1142}, issn = {1866-8372}, doi = {10.25932/publishup-50397}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-503976}, pages = {24}, year = {2020}, abstract = {We study the extremal properties of a stochastic process xt defined by the Langevin equation ẋₜ =√2Dₜ ξₜ, in which ξt is a Gaussian white noise with zero mean and Dₜ is a stochastic'diffusivity', defined as a functional of independent Brownian motion Bₜ.We focus on threechoices for the random diffusivity Dₜ: cut-off Brownian motion, Dₜt ∼ Θ(Bₜ), where Θ(x) is the Heaviside step function; geometric Brownian motion, Dₜ ∼ exp(-Bₜ); and a superdiffusive process based on squared Brownian motion, Dₜ ∼ B²ₜ. For these cases we derive exact expressions for the probability density functions of the maximal positive displacement and of the range of the process xₜ on the time interval ₜ ∈ (0, T).We discuss the asymptotic behaviours of the associated probability density functions, compare these against the behaviour of the corresponding properties of standard Brownian motion with constant diffusivity (Dₜ = D0) and also analyse the typical behaviour of the probability density functions which is observed for a majority of realisations of the stochastic diffusivity process.}, language = {en} } @misc{GrebenkovMetzlerOshanin2020, author = {Grebenkov, Denis S. and Metzler, Ralf and Oshanin, Gleb}, title = {From single-particle stochastic kinetics to macroscopic reaction rates}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1018}, issn = {1866-8372}, doi = {10.25932/publishup-48405}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-484059}, pages = {29}, year = {2020}, abstract = {We consider the first-passage problem for N identical independent particles that are initially released uniformly in a finite domain Ω and then diffuse toward a reactive area Γ, which can be part of the outer boundary of Ω or a reaction centre in the interior of Ω. For both cases of perfect and partial reactions, we obtain the explicit formulas for the first two moments of the fastest first-passage time (fFPT), i.e., the time when the first out of the N particles reacts with Γ. Moreover, we investigate the full probability density of the fFPT. We discuss a significant role of the initial condition in the scaling of the average fFPT with the particle number N, namely, a much stronger dependence (1/N and 1/N² for partially and perfectly reactive targets, respectively), in contrast to the well known inverse-logarithmic behaviour found when all particles are released from the same fixed point. We combine analytic solutions with scaling arguments and stochastic simulations to rationalise our results, which open new perspectives for studying the relevance of multiple searchers in various situations of molecular reactions, in particular, in living cells.}, language = {en} }