@article{RakosDominisSteindling2001, author = {Rakos, K. and Dominis, Dijana and Steindling, S.}, title = {Intermediate-band photometry of a rich cluster of galaxies : A2218}, year = {2001}, abstract = {This paper presents four color intermediate-band photometry of the cluster A2218 carried out using the Wise Observatory 1 m telescope. A2218 is one of the richest clusters in the Abell catalogue, with richness class 4. We find that A2218 has an unusually low fraction of blue galaxies for its redshift (z=0.171), and is populated mainly by E/S0 galaxies, while starburst systems are very scarce. The few starbursting galaxies present populate the faint end of the cluster luminosity function, close to the limiting magnitude of our observations. The difference between A2218 and other clusters at similar redshifts is very remarkable, underlining the influence of cluster richness on the evolution of its member galaxies.}, language = {en} } @article{KubasCassanBeaulieuetal.2005, author = {Kubas, Daniel and Cassan, A. and Beaulieu, Jean-Philippe and Coutures, C. and Dominik, M. and Albrow, Michael D. and Brillant, Stephane and Caldwell, John A. R. and Dominis, Dijana and Donatowicz, J. and Fendt, Christian and Fouque, P. and Jorgensen, Uffe Grae and Greenhill, John and Hill, K. and Heinm{\"u}ller, Janine and Horne, Keith and Kane, Stephen R. and Marquette, Jean-Baptiste and Martin, Ralph and Menzies, J. W. and Pollard, K. R. and Sahu, K. C. and Vinter, C. and Wambsganss, Joachim and Watson, R. and Williams, A. and Thurl, C.}, title = {Full characterization of binary-lens event OGLE-2002-BLG-069 from PLANET observations}, issn = {0004-6361}, year = {2005}, abstract = {We analyze the photometric data obtained by PLANET and OGLE on the caustic-crossing binary-lens microlensing event OGLE-2002-BLG-069. Thanks to the excellent photometric and spectroscopic coverage of the event, we are able to constrain the lens model up to the known ambiguity between close and wide binary lenses. The detection of annual parallax in combination with measurements of extended-source effects allows us to determine the mass, distance and velocity of the lens components for the competing models. While the model involving a close binary lens leads to a Bulge- Disc lens scenario with a lens mass of M = (0.51 ± 0.15) M-\&ODOT; and distance of D-L = (2.9 ± 0.4) kpc, the wide binary lens solution requires a rather implausible binary black-hole lens ( M \&GSIM; 126 M-\&ODOT;). Furthermore we compare current state-of-the-art numerical and empirical models for the surface brightness profile of the source, a G5III Bulge giant. We find that a linear limb-darkening model for the atmosphere of the source star is consistent with the data whereas a PHOENIX atmosphere model assuming LTE and with no free parameter does not match our observations}, language = {en} } @article{DominisMimicaPavlovskietal.2005, author = {Dominis, Dijana and Mimica, P. and Pavlovski, K. and Tamajo, E.}, title = {In between beta Lyrae and Algol : the case of V356 Sgr}, issn = {0004-640X}, year = {2005}, abstract = {The eclipsing binary system V356 Sgr is of considerable interest, since it is probably at the very end of its mass transfer phase, i.e. between beta Lyrae and Algol. Hence, the binary provides an opportunity to directly examine the exposed core of a star for signatures of nuclear burning, and to test stellar evolution models. The system is composed of an early B star accreting matter from a Roche-lobe filling A2 II star. Recently, with progress in the UV spectral region, significant revision of previous values for absolute parameters has been made. Therefore, we find it justified and important to present a new photometric solution. Our model is compared to an early disk model, and is discussed in the framework of mass transfer processes in this binary system}, language = {en} } @article{DominisButlerSimonetal.2001, author = {Dominis, Dijana and Butler, Keith and Simon, Klaus and Clausen, Jens Viggo and Pritchard, John}, title = {Magellanic clouds' binaries as distance indicators}, issn = {0934-4438}, year = {2001}, language = {en} } @phdthesis{Dominis2006, author = {Dominis, Dijana}, title = {The role of binary stars in searches for extrasolar planets by microlensing and astrometry}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-10814}, school = {Universit{\"a}t Potsdam}, year = {2006}, abstract = {When Galactic microlensing events of stars are observed, one usually measures a symmetric light curve corresponding to a single lens, or an asymmetric light curve, often with caustic crossings, in the case of a binary lens system. In principle, the fraction of binary stars at a certain separation range can be estimated based on the number of measured microlensing events. However, a binary system may produce a light curve which can be fitted well as a single lens light curve, in particullary if the data sampling is poor and the errorbars are large. We investigate what fraction of microlensing events produced by binary stars for different separations may be well fitted by and hence misinterpreted as single lens events for various observational conditions. We find that this fraction strongly depends on the separation of the binary components, reaching its minimum at between 0.6 and 1.0 Einstein radius, where it is still of the order of 5\% The Einstein radius is corresponding to few A.U. for typical Galactic microlensing scenarios. The rate for misinterpretation is higher for short microlensing events lasting up to few months and events with smaller maximum amplification. For fixed separation it increases for binaries with more extreme mass ratios. Problem of degeneracy in photometric light curve solution between binary lens and binary source microlensing events was studied on simulated data, and data observed by the PLANET collaboration. The fitting code BISCO using the PIKAIA genetic algorithm optimizing routine was written for optimizing binary-source microlensing light curves observed at different sites, in I, R and V photometric bands. Tests on simulated microlensing light curves show that BISCO is successful in finding the solution to a binary-source event in a very wide parameter space. Flux ratio method is suggested in this work for breaking degeneracy between binary-lens and binary-source photometric light curves. Models show that only a few additional data points in photometric V band, together with a full light curve in I band, will enable breaking the degeneracy. Very good data quality and dense data sampling, combined with accurate binary lens and binary source modeling, yielded the discovery of the lowest-mass planet discovered outside of the Solar System so far, OGLE-2005-BLG-390Lb, having only 5.5 Earth masses. This was the first observed microlensing event in which the degeneracy between a planetary binary-lens and an extreme flux ratio binary-source model has been successfully broken. For events OGLE-2003-BLG-222 and OGLE-2004-BLG-347, the degeneracy was encountered despite of very dense data sampling. From light curve modeling and stellar evolution theory, there was a slight preference to explain OGLE-2003-BLG-222 as a binary source event, and OGLE-2004-BLG-347 as a binary lens event. However, without spectra, this degeneracy cannot be fully broken. No planet was found so far around a white dwarf, though it is believed that Jovian planets should survive the late stages of stellar evolution, and that white dwarfs will retain planetary systems in wide orbits. We want to perform high precision astrometric observations of nearby white dwarfs in wide binary systems with red dwarfs in order to find planets around white dwarfs. We selected a sample of observing targets (WD-RD binary systems, not published yet), which can possibly have planets around the WD component, and modeled synthetic astrometric orbits which can be observed for these targets using existing and future astrometric facilities. Modeling was performed for the astrometric accuracy of 0.01, 0.1, and 1.0 mas, separation between WD and planet of 3 and 5 A.U., binary system separation of 30 A.U., planet masses of 10 Earth masses, 1 and 10 Jupiter masses, WD mass of 0.5M and 1.0 Solar masses, and distances to the system of 10, 20 and 30 pc. It was found that the PRIMA facility at the VLTI will be able to detect planets around white dwarfs once it is operating, by measuring the astrometric wobble of the WD due to a planet companion, down to 1 Jupiter mass. We show for the simulated observations that it is possible to model the orbits and find the parameters describing the potential planetary systems.}, subject = {Mikrogravitationslinseneffekt}, language = {en} } @article{BersierFruchterStrolgeretal.2006, author = {Bersier, David and Fruchter, Andrew S. and Strolger, Louis-Gregory and Gorosabel, Javier and Levan, Andrew and Burud, Ingunn and Rhoads, James E. and Becker, Andrew C. and Cassan, Andrew C. and Chornock, Ryan and Covino, Stefano and De Jong, Roelof S. and Dominis, Dijana and Filippenko, Alexei V. and Hjorth, Jens and Holmberg, Johan and Malesani, Daniele and Mobasher, Bahram and Olsen, Kurt A. G. and Stefanon, Mauro and Castro Cer{\´o}n, Jos{\´e} Mar{\´i}a C. and Fynbo, Johan P. U. and Holland, Stephen T. and Kouveliotou, Chryssa and Pedersen, Hans-Georg and Tanvir, Nieal R. and Woosley, S. E.}, title = {Evidence for a supernova associated with the X-ray flash 020903}, issn = {0004-637X}, doi = {10.1086/502640}, year = {2006}, abstract = {We present ground-based and Hubble Space Telescope optical observations of the X-ray flash ( XRF) 020903, covering 300 days. The afterglow showed a very rapid rise in the first day, followed by a relatively slow decay in the next few days. There was a clear bump in the light curve after similar to 25 days, accompanied by a drastic change in the spectral energy distribution. The light curve and the spectral energy distribution are naturally interpreted as describing the emergence and subsequent decay of a supernova ( SN), similar to SN 1998bw. At peak luminosity, the SN is estimated to be 0.8 +/- 0.1 mag fainter than SN 1998bw. This argues in favor of the existence of a SN associated with this XRF. A spectrum obtained 35 days after the burst shows emission lines from the host galaxy. We use this spectrum to put an upper limit on the oxygen abundance of the host at [O/H] <= 0.6 dex. We also discuss a possible trend between the softness of several bursts and the early behavior of the optical afterglow, in the sense that XRFs and X-ray-rich gamma- ray bursts ( GRBs) seem to have a plateau phase or even a rising light curve. This can be naturally explained in models in which XRFs are similar to GRBs but are seen off the jet axis.}, language = {en} } @article{BeaulieuBennettFouqueetal.2006, author = {Beaulieu, Jean-Philippe and Bennett, David P. and Fouqu{\´e}, Pascal and Williams, Andrew and Dominik, Martin and Jorgensen, Uffe Grae and Kubas, Daniel and Cassan, Arnaud and Coutures, Christian and Greenhill, John and Hill, Kym and Menzies, John and Sackett, Penny D. and Albrow, Michael D. and Brillant, Stephane and Caldwell, John A. R. and Calitz, Johannes Jacobus and Cook, Kem H. and Corrales Cosmeli, Esperanza de Santa Cecilia and Desort, Morgan and Dieters, Stefan and Dominis, Dijana and Donatowicz, Jadzia and Hoffman, Martie and Kane, Stephen R. and Marquette, Jean-Baptiste and Martin, Ralph and Meintjes, Pieter and Pollard, Karen R. and Sahu, Kailash C. and Vinter, Christian and Wambsganss, Joachim and Woller, Kristian and Horne, Keith and Steele, Iain and Bramich, Daniel M. and Burgdorf, Martin and Snodgrass, Colin and Bode, Mike and Udalski, Andr}, title = {Discovery of a cool planet of 5.5 Earth masses through gravitational microlensing}, issn = {0028-0836}, doi = {10.1038/Nature04441}, year = {2006}, abstract = {In the favoured core-accretion model of formation of planetary systems, solid planetesimals accumulate to build up planetary cores, which then accrete nebular gas if they are sufficiently massive. Around M-dwarf stars ( the most common stars in our Galaxy), this model favours the formation of Earth-mass (M+) to Neptune-mass planets with orbital radii of 1 to 10 astronomical units (AU), which is consistent with the small number of gas giant planets known to orbit M-dwarf host stars(1-4). More than 170 extrasolar planets have been discovered with a wide range of masses and orbital periods, but planets of Neptune's mass or less have not hitherto been detected at separations of more than 0.15 AU from normal stars. Here we report the discovery of a 5.5(-2.7)(+5.5)M(+) planetary companion at a separation of 2.6(- 0.6)(+1.5) AU from a 0.22(-0.11)(+0.21)M(.) M-dwarf star, where M-. refers to a solar mass. (We propose to name it OGLE- 2005-BLG-390Lb, indicating a planetary mass companion to the lens star of the microlensing event.) The mass is lower than that of GJ876d (ref. 5), although the error bars overlap. Our detection suggests that such cool, sub-Neptune-mass planets may be more common than gas giant planets, as predicted by the core accretion theory.}, language = {en} }