@article{ZuehlkeMeilingRoderetal.2021, author = {Z{\"u}hlke, Martin and Meiling, Till Thomas and Roder, Phillip and Riebe, Daniel and Beitz, Toralf and Bald, Ilko and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Janßen, Traute and Erhard, Marcel and Repp, Alexander}, title = {Photodynamic inactivation of E. coli bacteria via carbon nanodots}, series = {ACS omega / American Chemical Society}, volume = {6}, journal = {ACS omega / American Chemical Society}, number = {37}, publisher = {ACS Publications}, address = {Washington, DC}, issn = {2470-1343}, doi = {10.1021/acsomega.1c01700}, pages = {23742 -- 23749}, year = {2021}, abstract = {The increasing development of antibiotic resistance in bacteria has been a major problem for years, both in human and veterinary medicine. Prophylactic measures, such as the use of vaccines, are of great importance in reducing the use of antibiotics in livestock. These vaccines are mainly produced based on formaldehyde inactivation. However, the latter damages the recognition elements of the bacterial proteins and thus could reduce the immune response in the animal. An alternative inactivation method developed in this work is based on gentle photodynamic inactivation using carbon nanodots (CNDs) at excitation wavelengths λex > 290 nm. The photodynamic inactivation was characterized on the nonvirulent laboratory strain Escherichia coli K12 using synthesized CNDs. For a gentle inactivation, the CNDs must be absorbed into the cytoplasm of the E. coli cell. Thus, the inactivation through photoinduced formation of reactive oxygen species only takes place inside the bacterium, which means that the outer membrane is neither damaged nor altered. The loading of the CNDs into E. coli was examined using fluorescence microscopy. Complete loading of the bacterial cells could be achieved in less than 10 min. These studies revealed a reversible uptake process allowing the recovery and reuse of the CNDs after irradiation and before the administration of the vaccine. The success of photodynamic inactivation was verified by viability assays on agar. In a homemade flow photoreactor, the fastest successful irradiation of the bacteria could be carried out in 34 s. Therefore, the photodynamic inactivation based on CNDs is very effective. The membrane integrity of the bacteria after irradiation was verified by slide agglutination and atomic force microscopy. The method developed for the laboratory strain E. coli K12 could then be successfully applied to the important avian pathogens Bordetella avium and Ornithobacterium rhinotracheale to aid the development of novel vaccines.}, language = {en} } @misc{WolffCanilRehermannetal.2020, author = {Wolff, Christian Michael and Canil, Laura and Rehermann, Carolin and Nguyen, Ngoc Linh and Zu, Fengshuo and Ralaiarisoa, Maryline and Caprioglio, Pietro and Fiedler, Lukas and Stolterfoht, Martin and Kogikoski, Junior, Sergio and Bald, Ilko and Koch, Norbert and Unger, Eva L. and Dittrich, Thomas and Abate, Antonio and Neher, Dieter}, title = {Correction to 'Perfluorinated self-assembled monolayers enhance the stability and efficiency of inverted perovskite solar cells' (2020, 14 (2), 1445-1456)}, series = {ACS nano}, volume = {14}, journal = {ACS nano}, number = {11}, publisher = {American Chemical Society}, address = {Washington, DC}, issn = {1936-0851}, doi = {10.1021/acsnano.0c08081}, pages = {16156 -- 16156}, year = {2020}, language = {en} } @article{VogelRackwitzSchuermanetal.2015, author = {Vogel, Stefanie and Rackwitz, Jenny and Schuerman, Robin and Prinz, Julia and Milosavljevic, Aleksandar R. and Refregiers, Matthieu and Giuliani, Alexandre and Bald, Ilko}, title = {Using DNA origami nanostructures to determine absolute cross sections for UV photon-induced DNA strand breakage}, series = {The journal of physical chemistry letters}, volume = {6}, journal = {The journal of physical chemistry letters}, number = {22}, publisher = {American Chemical Society}, address = {Washington}, issn = {1948-7185}, doi = {10.1021/acs.jpclett.5b02238}, pages = {4589 -- 4593}, year = {2015}, abstract = {We have characterized ultraviolet (UV) photon-induced DNA strand break processes by determination of absolute cross sections for photoabsorption and for sequence-specific DNA single strand breakage induced by photons in an energy range from 6.50 to 8.94 eV. These represent the lowest-energy photons able to induce DNA strand breaks. Oligonudeotide targets are immobilized on a UV transparent substrate in controlled quantities through attachment to DNA origami templates. Photon-induced dissociation of single DNA strands is visualized and quantified using atomic force microscopy. The obtained quantum yields for strand breakage vary between 0.06 and 0.5, indicating highly efficient DNA strand breakage by UV photons, which is clearly dependent on the photon energy. Above the ionization threshold strand breakage becomes clearly the dominant form of DNA radiation damage, which is then also dependent on the nucleotide sequence.}, language = {en} } @article{VogelEbelSchuermannetal.2019, author = {Vogel, Stefanie and Ebel, Kenny and Sch{\"u}rmann, Robin Mathis and Heck, Christian and Meiling, Till and Milosavljevic, Aleksandar R. and Giuliani, Alexandre and Bald, Ilko}, title = {Vacuum-UV and Low-Energy Electron-Induced DNA Strand Breaks}, series = {ChemPhysChem : a European journal of chemical physics and physical chemistry}, volume = {20}, journal = {ChemPhysChem : a European journal of chemical physics and physical chemistry}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1439-4235}, doi = {10.1002/cphc.201801152}, pages = {823 -- 830}, year = {2019}, abstract = {DNA is effectively damaged by radiation, which can on the one hand lead to cancer and is on the other hand directly exploited in the treatment of tumor tissue. DNA strand breaks are already induced by photons having an energy below the ionization energy of DNA. At high photon energies, most of the DNA strand breaks are induced by low-energy secondary electrons. In the present study we quantified photon and electron induced DNA strand breaks in four different 12mer oligonucleotides. They are irradiated directly with 8.44 eV vacuum ultraviolet (VUV) photons and 8.8 eV low energy electrons (LEE). By using Si instead of VUV transparent CaF2 as a substrate the VUV exposure leads to an additional release of LEEs, which have a maximum energy of 3.6 eV and can significantly enhance strand break cross sections. Atomic force microscopy is used to visualize strand breaks on DNA origami platforms and to determine absolute values for the strand break cross sections. Upon irradiation with 8.44 eV photons all the investigated sequences show very similar strand break cross sections in the range of 1.7-2.3x10(-16) cm(2). The strand break cross sections for LEE irradiation at 8.8 eV are one to two orders of magnitude larger than the ones for VUV photons, and a slight sequence dependence is observed. The sequence dependence is even more pronounced for LEEs with energies <3.6 eV. The present results help to assess DNA damage by photons and electrons close to the ionization threshold.}, language = {en} } @article{VogelEbelHecketal.2019, author = {Vogel, Stefanie and Ebel, Kenny and Heck, Christian and Sch{\"u}rmann, Robin Mathis and Milosavljevic, Aleksandar R. and Giuliani, Alexandre and Bald, Ilko}, title = {Vacuum-UV induced DNA strand breaks}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {21}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {4}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c8cp06813e}, pages = {1972 -- 1979}, year = {2019}, abstract = {Radiation therapy is a basic part of cancer treatment. To increase the DNA damage in carcinogenic cells and preserve healthy tissue at the same time, radiosensitizing molecules such as halogenated nucleobase analogs can be incorporated into the DNA during the cell reproduction cycle. In the present study 8.44 eV photon irradiation induced single strand breaks (SSB) in DNA sequences modified with the radiosensitizer 5-bromouracil (U-5Br) and 8-bromoadenine ((8Br)A) are investigated. U-5Br was incorporated in the 13mer oligonucleotide flanked by different nucleobases. It was demonstrated that the highest SSB cross sections were reached, when cytosine and thymine were adjacent to U-5Br, whereas guanine as a neighboring nucleobase decreases the activity of U-5Br indicating that competing reaction mechanisms are active. This was further investigated with respect to the distance of guanine to U-5Br separated by an increasing number of adenine nucleotides. It was observed that the SSB cross sections were decreasing with an increasing number of adenine spacers between guanine and U-5Br until the SSB cross sections almost reached the level of a non-modified DNA sequence, which demonstrates the high sequence dependence of the sensitizing effect of U-5Br. (8Br)A was incorporated in a 13mer oligonucleotide as well and the strand breaks were quantified upon 8.44 eV photon irradiation in direct comparison to a non-modified DNA sequence of the same composition. No clear enhancement of the SSB yield of the modified in comparison to the non-modified DNA sequence could be observed. Additionally, secondary electrons with a maximum energy of 3.6 eV were generated when using Si as a substrate giving rise to further DNA damage. A clear enhancement in the SSB yield can be ascertained, but to the same degree for both the non-modified DNA sequence and the DNA sequence modified with (8Br)A.}, language = {en} } @article{TasiorBaldDeperasinskaetal.2015, author = {Tasior, Mariusz and Bald, Ilko and Deperasinska, Irena and Cywinski, Piotr J. and Gryko, Daniel T.}, title = {An internal charge transfer-dependent solvent effect in V-shaped azacyanines}, series = {Organic \& biomolecular chemistry : an international journal of synthetic, physical and biomolecular organic chemistry}, volume = {13}, journal = {Organic \& biomolecular chemistry : an international journal of synthetic, physical and biomolecular organic chemistry}, number = {48}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1477-0520}, doi = {10.1039/c5ob01633a}, pages = {11714 -- 11720}, year = {2015}, language = {en} } @article{TapioBald2020, author = {Tapio, Kosti and Bald, Ilko}, title = {The potential of DNA origami to build multifunctional materials}, series = {Multifunctional Materials}, volume = {3}, journal = {Multifunctional Materials}, number = {3}, publisher = {IOP Publishing}, address = {Bristol}, issn = {2399-7532}, doi = {10.1088/2399-7532/ab80d5}, year = {2020}, abstract = {The development of the DNA origami technique has revolutionized the field of DNA nanotechnology as it allows to create virtually any arbitrarily shaped nanostructure out of DNA on a 10-100 nm length scale by a rather robust self-assembly process. Additionally, DNA origami nanostructures can be modified with chemical entities with nanometer precision, which allows to tune precisely their properties, their mutual interactions and interactions with their environment. The flexibility and modularity of DNA origami allows also for the creation of dynamic nanostructures, which opens up a plethora of possible functions and applications. Here we review the fundamental properties of DNA origami nanostructures, the wide range of functions that arise from these properties and finally present possible applications of DNA origami based multifunctional materials.}, language = {en} } @article{StefancuNanZhuetal.2022, author = {Stefancu, Andrei and Nan, Lin and Zhu, Li and Chis, Vasile and Bald, Ilko and Liu, Min and Leopold, Nicolae and Maier, Stefan A. and Cortes, Emiliano}, title = {Controlling plasmonic chemistry pathways through specific ion effects}, series = {Advanced optical materials}, volume = {10}, journal = {Advanced optical materials}, number = {14}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2195-1071}, doi = {10.1002/adom.202200397}, pages = {10}, year = {2022}, abstract = {Plasmon-driven dehalogenation of brominated purines has been recently explored as a model system to understand fundamental aspects of plasmon-assisted chemical reactions. Here, it is shown that divalent Ca2+ ions strongly bridge the adsorption of bromoadenine (Br-Ade) to Ag surfaces. Such ion-mediated binding increases the molecule's adsorption energy leading to an overlap of the metal energy states and the molecular states, enabling the chemical interface damping (CID) of the plasmon modes of the Ag nanostructures (i.e., direct electron transfer from the metal to Br-Ade). Consequently, the conversion of Br-Ade to adenine almost doubles following the addition of Ca2+. These experimental results, supported by theoretical calculations of the local density of states of the Ag/Br-Ade complex, indicate a change of the charge transfer pathway driving the dehalogenation reaction, from Landau damping (in the lack of Ca2+ ions) to CID (after the addition of Ca2+). The results show that the surface dynamics of chemical species (including water molecules) play an essential role in charge transfer at plasmonic interfaces and cannot be ignored. It is envisioned that these results will help in designing more efficient nanoreactors, harnessing the full potential of plasmon-assisted chemistry.}, language = {en} } @article{SchuermannTitovEbeletal.2022, author = {Sch{\"u}rmann, Robin and Titov, Evgenii and Ebel, Kenny and Kogikoski Junior, Sergio and Mostafa, Amr and Saalfrank, Peter and Milosavljević, Aleksandar R. and Bald, Ilko}, title = {The electronic structure of the metal-organic interface of isolated ligand coated gold nanoparticles}, series = {Nanoscale Advances}, volume = {4}, journal = {Nanoscale Advances}, number = {6}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2516-0230}, doi = {10.1039/d1na00737h}, pages = {1599 -- 1607}, year = {2022}, abstract = {Light induced electron transfer reactions of molecules on the surface of noble metal nanoparticles (NPs) depend significantly on the electronic properties of the metal-organic interface. Hybridized metal-molecule states and dipoles at the interface alter the work function and facilitate or hinder electron transfer between the NPs and ligand. X-ray photoelectron spectroscopy (XPS) measurements of isolated AuNPs coated with thiolated ligands in a vacuum have been performed as a function of photon energy, and the depth dependent information of the metal-organic interface has been obtained. The role of surface dipoles in the XPS measurements of isolated ligand coated NPs is discussed and the binding energy of the Au 4f states is shifted by around 0.8 eV in the outer atomic layers of 4-nitrothiophenol coated AuNPs, facilitating electron transport towards the molecules. Moreover, the influence of the interface dipole depends significantly on the adsorbed ligand molecules. The present study paves the way towards the engineering of the electronic properties of the nanoparticle surface, which is of utmost importance for the application of plasmonic nanoparticles in the fields of heterogeneous catalysis and solar energy conversion.}, language = {en} } @article{SchuermannNagelJuergensenetal.2022, author = {Sch{\"u}rmann, Robin and Nagel, Alessandro and Juergensen, Sabrina and Pathak, Anisha and Reich, Stephanie and Pacholski, Claudia and Bald, Ilko}, title = {Microscopic understanding of reaction rates observed in plasmon chemistry of nanoparticle-ligand systems}, series = {The journal of physical chemistry : C, Nanomaterials and interfaces}, volume = {126}, journal = {The journal of physical chemistry : C, Nanomaterials and interfaces}, number = {11}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/acs.jpcc.2c00278}, pages = {5333 -- 5342}, year = {2022}, abstract = {Surface-enhanced Raman scattering (SERS) is an effective and widely used technique to study chemical reactions induced or catalyzed by plasmonic substrates, since the experimental setup allows us to trigger and track the reaction simultaneously and identify the products. However, on substrates with plasmonic hotspots, the total signal mainly originates from these nanoscopic volumes with high reactivity and the information about the overall consumption remains obscure in SERS measurements. This has important implications; for example, the apparent reaction order in SERS measurements does not correlate with the real reaction order, whereas the apparent reaction rates are proportional to the real reaction rates as demonstrated by finite-difference time-domain (FDTD) simulations. We determined the electric field enhancement distribution of a gold nanoparticle (AuNP) monolayer and calculated the SERS intensities in light-driven reactions in an adsorbed self-assembled molecular monolayer on the AuNP surface. Accordingly, even if a high conversion is observed in SERS due to the high reactivity in the hotspots, most of the adsorbed molecules on the AuNP surface remain unreacted. The theoretical findings are compared with the hot-electron-induced dehalogenation of 4-bromothiophenol, indicating a time dependency of the hot-carrier concentration in plasmon-mediated reactions. To fit the kinetics of plasmon-mediated reactions in plasmonic hotspots, fractal-like kinetics are well suited to account for the inhomogeneity of reactive sites on the substrates, whereas also modified standard kinetics model allows equally well fits. The outcomes of this study are on the one hand essential to derive a mechanistic understanding of reactions on plasmonic substrates by SERS measurements and on the other hand to drive plasmonic reactions with high local precision and facilitate the engineering of chemistry on a nanoscale.}, language = {en} }