@article{SevostianovBruno2018, author = {Sevostianov, Igor and Bruno, Giovanni}, title = {Maxwell scheme for internal stresses in multiphase composites}, series = {Mechanics of Materials}, volume = {129}, journal = {Mechanics of Materials}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0167-6636}, doi = {10.1016/j.mechmat.2018.12.005}, pages = {320 -- 331}, year = {2018}, abstract = {The paper focuses on the reformulation of classic Maxwell's (1873) homogenization method for calculation of the residual stresses in matrix composites. For this goal, we equate the far fields produced by a set of inhomogeneities subjected to known eigenstrains and by a fictitious domain with unknown eigenstrain. The effect of interaction between the inhomogeneities is reduced to the calculation of the additional field acting on an inhomogeneity due to the eigenstrains in its neighbors. An explicit formula for residual stresses is derived for the general case of a multiphase composite. The method is illustrated by several examples. The results are compared with available experimental data as well as with predictions provided by the non-interaction approximation (Eshelby solution). It is shown that accounting for interaction can explain many experimentally observed phenomena and is required for adequate quantitative analytical modeling of the residual stresses in matrix composites.}, language = {en} } @article{MishurovaBrunoEvsevleevetal.2020, author = {Mishurova, Tatiana and Bruno, Giovanni and Evsevleev, Sergei and Sevostianov, Igor}, title = {Determination of macroscopic stress from diffraction experiments}, series = {Journal of applied physics}, volume = {128}, journal = {Journal of applied physics}, number = {2}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-8979}, doi = {10.1063/5.0009101}, pages = {14}, year = {2020}, abstract = {The paper is motivated by some inconsistencies and contradictions present in the literature on the calculation of the so-called diffraction elastic constants. In an attempt at unifying the views that the two communities of Materials Science and Mechanics of Materials have on the subject, we revisit and define the terminology used in the field. We also clarify the limitations of the commonly used approaches and show that a unified methodology is also applicable to textured materials with a nearly arbitrary grain shape. We finally compare the predictions based on this methodology with experimental data obtained by in situ synchrotron radiation diffraction on additively manufactured Ti-6Al-4V alloy. We show that (a) the transverse isotropy of the material yields good agreement between the best-fit isotropy approximation (equivalent to the classic Kroner's model) and the experimental data and (b) the use of a general framework allows the calculation of all components of the tensor of diffraction elastic constants, which are not easily measurable by diffraction methods. This allows us to extend the current state-of-the-art with a predictive tool.}, language = {en} } @article{EvsevleevMishurovaCabezaetal.2018, author = {Evsevleev, Sergei and Mishurova, Tatiana and Cabeza, Sandra and Koos, R. and Sevostianov, Igor and Garc{\´e}s, Gonzales and Requena, Guillermo and Fernandez, R. and Bruno, Giovanni}, title = {The role of intermetallics in stress partitioning and damage evolution of AlSil2CuMgNi alloy}, series = {Materials Science and Engineering: A-Structural materials: properties, microstructure and processing}, volume = {736}, journal = {Materials Science and Engineering: A-Structural materials: properties, microstructure and processing}, publisher = {Elsevier}, address = {Lausanne}, issn = {0921-5093}, doi = {10.1016/j.msea.2018.08.070}, pages = {453 -- 464}, year = {2018}, abstract = {Load partitioning between phases in a cast AlSi12CuMgNi alloy was investigated by in-situ compression test during neutron diffraction experiments. Computed tomography (CT) was used to determine volume fractions of eutectic Si and intermetallic (IM) phases, and to assess internal damage after ex-situ compression tests. The CT reconstructed volumes showed the interconnectivity of IM phases, which build a 3D network together with eutectic Si. Large stresses were found in IMs, revealing their significant role as a reinforcement for the alloy. An existing micromechanical model based on Maxwell scheme was extended to the present case, assuming the alloy as a three-phase composite (Al matrix, eutectic Si, IM phases). The model agrees well with the experimental data. Moreover, it allows predicting the principal stresses in each phase, while experiments can only determine stress differences between the axial and radial sample directions. Finally, we showed that the addition of alloying elements not only allowed developing a 3D interconnected network, but also improved the strength of the Al matrix, and the ability of the alloy constituents to bear mechanical load.}, language = {en} } @article{CabezaMishurovaGarcesetal.2017, author = {Cabeza, Sandra and Mishurova, Tatiana and Garc{\´e}s, Gonzales and Sevostianov, Igor and Requena, Guillermo and Bruno, Giovanni}, title = {Stress-induced damage evolution in cast AlSi12CuMgNi alloy with one- and two-ceramic reinforcements}, series = {Journal of materials science}, volume = {52}, journal = {Journal of materials science}, publisher = {Springer}, address = {New York}, issn = {0022-2461}, doi = {10.1007/s10853-017-1182-7}, pages = {10198 -- 10216}, year = {2017}, abstract = {Two composites, consisting of an as-cast AlSi12CuMgNi alloy reinforced with 15 vol\% Al2O3 short fibres and with 7 vol\% Al2O3 short fibres + 15 vol\% SiC particles, were studied. Synchrotron computed tomography disclosed distribution, orientation, and volume fraction of the different phases. In-situ compression tests during neutron diffraction in direction parallel to the fibres plane revealed the load partition between phases. Internal damage (fragmentation) of the Si phase and Al2O3 fibres was directly observed in CT reconstructions. Significant debonding between Al matrix and SiC particles was also found. Finally, based on the Maxwell scheme, a micromechanical model was utilized for the new composite with two-ceramic reinforcements; it rationalizes the experimental data and predicts the evolution of all internal stress components in each phase.}, language = {en} } @article{BrunoKachanovSevostianovetal.2018, author = {Bruno, Giovanni and Kachanov, Mark and Sevostianov, Igor and Shyam, Amit}, title = {Micromechanical modeling of non-linear stress-strain behavior of polycrystalline microcracked materials under tension}, series = {Acta materialia}, volume = {164}, journal = {Acta materialia}, publisher = {Elsevier}, address = {Oxford}, issn = {1359-6454}, doi = {10.1016/j.actamat.2018.10.024}, pages = {50 -- 59}, year = {2018}, abstract = {The stress-strain behavior of microcracked polycrystalline materials (such as ceramics or rocks) under conditions of tensile, displacement-controlled, loading is discussed. Micromechanical explanation and modeling of the basic features, such as non-linearity and hysteresis in stress-strain curves, is developed, with stable microcrack propagation and "roughness" of intergranular cracks playing critical roles. Experiments involving complex loading histories were done on large- and medium grain size beta-eucryptite ceramic. The model is shown to reproduce the basic features of the observed stress-strain curves. (C) 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.}, language = {en} }