@article{ChristensenSchulteLadbeckSanchezetal.2005, author = {Christensen, Lise Bech and Schulte-Ladbeck, R. E. and Sanchez, Sebastian F. and Becker, Thomas and Jahnke, Knud and Kelz, A. and Roth, Martin M. and Wisotzki, Lutz}, title = {Abundances and kinematics of a candidate sub-damped Lymana galaxy toward PHL 1226}, year = {2005}, abstract = {The spectrum of the quasar PHL 1226 is known to have a strong Mg II and sub-damped Lymanalpha (sub-DLA) absorption line system with N(H I) = (5 +/- 2) x 10(19) cm(-2) at z = 0.1602. Using integral field spectra from the Potsdam Multi Aperture Spectrophotometer (PMAS) we investigate a galaxy at an impact parameter of 6".4 which is most probably responsible for the absorption lines. A fainter galaxy at a similar redshift and a slightly larger distance from the QSO is known to exist, but we assume that the absorption is caused by the more nearby galaxy. From optical Balmer lines we estimate an intrinsic reddening consistent with 0, and a moderate star formation rate of 0.5 M-circle dot yr(-1) is inferred from the Ha luminosity. Using nebular emission line ratios we find a solar oxygen abundance 12 + log (O/H) = 8.7 +/- 0.1 and a solar nitrogen to oxygen abundance ratio log (N/O) = -1.0 +/- 0.2. This abundance is larger than those of all known sub-DLA systems derived from analyses of metal absorption lines in quasar spectra. On the other hand, the properties are compatible with the most metal rich galaxies responsible for strong Mg II absorption systems. These two categories can be reconciled if we assume an abundance gradient similar to local galaxies. Under that assumption we predict abundances 12 + log (O/H) = 7.1 and log (N/O) = -1.9 for the sub-DLA cloud, which is similar to high redshift DLA and sub-DLA systems. We find evidence for a rotational velocity of similar to200 km s(-1) over a length of similar to7 kpc. From the geometry and kinematics of the galaxy we estimate that the absorbing cloud does not belong to a rotating disk, but could originate in a rotating halo}, language = {en} } @article{BardenRixSomervilleetal.2005, author = {Barden, Marco and Rix, Hans-Walter and Somerville, Rachel S. and Bell, Eric F. and H{\"a}ußler, Boris and Peng, Chen Y. and Borch, Andrea and Beckwith, Steven V. W. and Caldwell, John A. R. and Heymans, Catherine and Jahnke, Knud and Jogee, Shardha and McIntosh, Daniel H. and Meisenheimer, Klaus and Sanchez, Sebastian F. and Wisotzki, Lutz and Wolf, C.}, title = {GEMS : the surface brightness and surface mass density evolution of disk galaxies}, year = {2005}, abstract = {We combine HST imaging from the GEMS ( Galaxy Evolution from Morphologies and SEDs) survey with photometric redshifts from COMBO-17 to explore the evolution of disk-dominated galaxies since z less than or similar to 1.1. The sample is composed of all GEMS galaxies with Sersic indices n < 2.5, derived from fits to the galaxy images. We account fully for selection effects through careful analysis of image simulations; we are limited by the depth of the redshift and HST data to the study of galaxies with M-V less than or similar to -20, or equivalently, log (M/M-circle dot) greater than or similar to 10. We find strong evolution in the magnitude-size scaling relation for galaxies with M-V less than or similar to -20, corresponding to a brightening of similar to 1 mag arcsec(-2) in rest-frame V band by z similar to 1. Yet disks at a given absolute magnitude are bluer and have lower stellar mass-to-light ratios at z similar to 1 than at the present day. As a result, our findings indicate weak or no evolution in the relation between stellar mass and effective disk size for galaxies with log (M/M-circle dot) greater than or similar to 10 over the same time interval. This is strongly inconsistent with the most naive theoretical expectation, in which disk size scales in proportion to the halo virial radius, which would predict that disks are a factor of 2 denser at fixed mass at z similar to 1. The lack of evolution in the stellar mass-size relation is consistent with an "inside-out'' growth of galaxy disks on average (galaxies increasing in size as they grow more massive), although we cannot rule out more complex evolutionary scenarios}, language = {en} }