@article{ZieglerRajabiHeidbachetal.2016, author = {Ziegler, Moritz O. and Rajabi, Mojtaba and Heidbach, Oliver and Hersir, Gylfi Pall and Agustsson, Kristjan and Arnadottir, Sigurveig and Zang, Arno}, title = {The stress pattern of Iceland}, series = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, volume = {674}, journal = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0040-1951}, doi = {10.1016/j.tecto.2016.02.008}, pages = {101 -- 113}, year = {2016}, abstract = {Iceland is located on the Mid-Atlantic Ridge which is the plate boundary between the Eurasian and the North American plates. It is one of the few places on earth where an active spreading centre is located onshore but the stress pattern has not been extensively investigated so far. In this paper we present a comprehensive compilation of the orientation of maximum horizontal stress (S-Hmax). In particular we interpret borehole breakouts and drilling induced fractures from borehole image logs in 57 geothermal wells onshore Iceland. The borehole results are combined with other stress indicators including earthquake focal mechanism solutions, geological information and overcoring measurements resulting in a dataset with 495 data records for the S-Hmax orientation. The reliability of each indicator is assessed according to the quality criteria of the World Stress Map project The majority of S-Hmax orientation data records in Iceland is derived from earthquake focal mechanism solutions (35\%) and geological fault slip inversions (26\%). 20\% of the data are borehole related stress indicators. In addition minor shares of S-Hmax orientations are compiled, amongst others, from focal mechanism inversions and the alignment of fissure eruptions. The results show that the S-Hmax orientations derived from different depths and stress indicators are consistent with each other. The resulting pattern of the present-day stress in Iceland has four distinct subsets of S-Hmax orientations. The S-Hmax orientation is parallel to the rift axes in the vicinity of the active spreading regions. It changes from NE-SW in the South to approximately N-S in central Iceland and NNW-SSE in the North. In the Westfjords which is located far away from the ridge the regional S-Hmax rotates and is parallel to the plate motion. (C) 2016 Elsevier B.V. All rights reserved.}, language = {en} } @article{SoumayaBenAyedRajabietal.2018, author = {Soumaya, Abdelkader and Ben Ayed, Noureddine and Rajabi, Mojtaba and Meghraoui, Mustapha and Delvaux, Damien and Kadri, Ali and Ziegler, Moritz and Maouche, Said and Braham, Ahmed}, title = {Active Faulting Geometry and Stress Pattern Near Complex Strike-Slip Systems Along the Maghreb Region}, series = {Tectonics}, volume = {37}, journal = {Tectonics}, number = {9}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1029/2018TC004983}, pages = {3148 -- 3173}, year = {2018}, abstract = {The Maghreb region (from Tunisia to Gibraltar) is a key area in the western Mediterranean to study the active tectonics and stress pattern across the Africa-Eurasia convergent plate boundary. In the present study, we compile comprehensive data set of well-constrained crustal stress indicators (from single focal mechanism solutions, formal inversion of focal mechanism solutions, and young geologic fault slip data) based on our and published data analyses. Stress inversion of focal mechanisms reveals a first-order transpression-compatible stress field and a second-order spatial variation of tectonic regime across the Maghreb region, with a relatively stable S-Hmax orientation from east to west. Therefore, the present-day active contraction of the western Africa-Eurasia plate boundary is accommodated by (1) E-W strike-slip faulting with reverse component along the Eastern Tell and Saharan-Tunisian Atlas, (2) a predominantly NE trending thrust faulting with strike-slip component in the Western Tell part, and (3) a conjugate strike-slip faulting regime with normal component in the Alboran/Rif domain. This spatial variation of the present-day stress field and faulting regime is relatively in agreement with the inferred stress information from neotectonic features. According to existing and newly proposed structural models, we highlight the role of main geometrically complex shear zones in the present-day stress pattern of the Maghreb region. Then, different geometries of these major inherited strike-slip faults and its related fractures (V-shaped conjugate fractures, horsetail splays faults, and Riedel fractures) impose their component on the second- and third-order stress regimes. Neotectonic and smoothed present-day stress map (mean S-Hmax orientation) reveal that plate boundary forces acting on the Africa-Eurasia collisional plates control the long wavelength of the stress field pattern in the Maghreb. The current tectonic deformations and the upper crustal stress field in the study area are governed by the interplay of the oblique plate convergence (i.e., Africa-Eurasia), lithosphere-mantle interaction, and preexisting tectonic weakness zones.}, language = {en} } @article{RajabiZieglerTingayetal.2016, author = {Rajabi, Mojtaba and Ziegler, Moritz O. and Tingay, Mark and Heidbach, Oliver and Reynolds, Scott}, title = {Contemporary tectonic stress pattern of the Taranaki Basin, New Zealand}, series = {Journal of geophysical research : Solid earth}, volume = {121}, journal = {Journal of geophysical research : Solid earth}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9313}, doi = {10.1002/2016JB013178}, pages = {6053 -- 6070}, year = {2016}, abstract = {The present-day stress state is a key parameter in numerous geoscientific research fields including geodynamics, seismic hazard assessment, and geomechanics of georeservoirs. The Taranaki Basin of New Zealand is located on the Australian Plate and forms the western boundary of tectonic deformation due to Pacific Plate subduction along the Hikurangi margin. This paper presents the first comprehensive wellbore-derived basin-scale in situ stress analysis in New Zealand. We analyze borehole image and oriented caliper data from 129 petroleum wells in the Taranaki Basin to interpret the shape of boreholes and determine the orientation of maximum horizontal stress (S-Hmax). We combine these data (151 S-Hmax data records) with 40 stress data records derived from individual earthquake focal mechanism solutions, 6 from stress inversions of focal mechanisms, and 1 data record using the average of several focal mechanism solutions. The resulting data set has 198 data records for the Taranaki Basin and suggests a regional S-Hmax orientation of N068 degrees E (22 degrees), which is in agreement with NW-SE extension suggested by geological data. Furthermore, this ENE-WSW average S-Hmax orientation is subparallel to the subduction trench and strike of the subducting slab (N50 degrees E) beneath the central western North Island. Hence, we suggest that the slab geometry and the associated forces due to slab rollback are the key control of crustal stress in the Taranaki Basin. In addition, we find stress perturbations with depth in the vicinity of faults in some of the studied wells, which highlight the impact of local stress sources on the present-day stress rotation.}, language = {en} }