@article{WernetLeitnerJosefssonetal.2017, author = {Wernet, Philippe and Leitner, T. and Josefsson, Ida and Mazza, T. and Miedema, P. S. and Schroder, H. and Beye, Martin and Kunnus, K. and Schreck, S. and Radcliffe, P. and Dusterer, S. and Meyer, M. and Odelius, Michael and Fohlisch, Alexander}, title = {Communication: Direct evidence for sequential dissociation of gas-phase Fe(CO)(5) via a singlet pathway upon excitation at 266 nm}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {146}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.4984774}, pages = {5}, year = {2017}, abstract = {We prove the hitherto hypothesized sequential dissociation of Fe(CO)(5) in the gas phase upon photoexcitation at 266 nm via a singlet pathway with time-resolved valence and core-level photoelectron spectroscopy with an x-ray free-electron laser. Valence photoelectron spectra are used to identify free CO molecules and to determine the time constants of stepwise dissociation to Fe(CO)(4) within the temporal resolution of the experiment and further to Fe(CO)(3) within 3 ps. Fe 3p core-level photoelectron spectra directly reflect the singlet spin state of the Fe center in Fe(CO)(5), Fe(CO)(4), and Fe(CO)(3) showing that the dissociation exclusively occurs along a singlet pathway without triplet-state contribution. Our results are important for assessing intra- and intermolecular relaxation processes in the photodissociation dynamics of the prototypical Fe(CO)(5) complex in the gas phase and in solution, and they establish time-resolved core-level photoelectron spectroscopy as a powerful tool for determining the multiplicity of transition metals in photochemical reactions of coordination complexes. Published by AIP Publishing.}, language = {en} } @article{WernetKunnusSchrecketal.2012, author = {Wernet, Philippe and Kunnus, Kristjan and Schreck, Simon and Quevedo, Wilson and Kurian, Reshmi and Techert, Simone and de Groot, Frank M. F. and Odelius, Michael and F{\"o}hlisch, Alexander}, title = {Dissecting local atomic and intermolecular interactions of transition-metal ions in solution with selective X-ray spectroscopy}, series = {The journal of physical chemistry letters}, volume = {3}, journal = {The journal of physical chemistry letters}, number = {23}, publisher = {American Chemical Society}, address = {Washington}, issn = {1948-7185}, doi = {10.1021/jz301486u}, pages = {3448 -- 3453}, year = {2012}, abstract = {Determining covalent and charge-transfer contributions to bonding in solution has remained an experimental challenge. Here, the quenching of fluorescence decay channels as expressed in dips in the L-edge X-ray spectra of solvated 3d transition-metal ions and complexes was reported as a probe. With a full set of experimental and theoretical ab initio L-edge X-ray spectra of aqueous Cr3+, including resonant inelastic X-ray scattering, we address covalency and charge transfer for this prototypical transition-metal ion in solution. We dissect local atomic effects from intermolecular interactions and quantify X-ray optical effects. We find no evidence for the asserted ultrafast charge transfer to the solvent and show that the dips are readily explained by X-ray optical effects and local atomic state dependence of the fluorescence yield. Instead, we find, besides ionic interactions, a covalent contribution to the bonding in the aqueous complex of ligand-to-metal charge-transfer character.}, language = {en} } @article{WernetKunnusJosefssonetal.2015, author = {Wernet, Philippe and Kunnus, Kristjan and Josefsson, Ida and Rajkovic, Ivan and Quevedo, Wilson and Beye, Martin and Schreck, Simon and Gruebel, S. and Scholz, Mirko and Nordlund, Dennis and Zhang, Wenkai and Hartsock, Robert W. and Schlotter, William F. and Turner, Joshua J. and Kennedy, Brian and Hennies, Franz and de Groot, Frank M. F. and Gaffney, Kelly J. and Techert, Simone and Odelius, Michael and F{\"o}hlisch, Alexander}, title = {Orbital-specific mapping of the ligand exchange dynamics of Fe(CO)(5) in solution}, series = {Nature : the international weekly journal of science}, volume = {520}, journal = {Nature : the international weekly journal of science}, number = {7545}, publisher = {Nature Publ. Group}, address = {London}, issn = {0028-0836}, doi = {10.1038/nature14296}, pages = {78 -- 81}, year = {2015}, abstract = {Transition-metal complexes have long attracted interest for fundamental chemical reactivity studies and possible use in solar energy conversion(1,2). Electronic excitation, ligand loss from the metal centre, or a combination of both, creates changes in charge and spin density at the metal site(3-11) that need to be controlled to optimize complexes for photocatalytic hydrogen production(8) and selective carbon-hydrogen bond activation(9-11). An understanding at the molecular level of how transition-metal complexes catalyse reactions, and in particular of the role of the short-lived and reactive intermediate states involved, will be critical for such optimization. However, suitable methods for detailed characterization of electronic excited states have been lacking. Here we show, with the use of X-ray laser-based femtosecond-resolution spectroscopy and advanced quantum chemical theory to probe the reaction dynamics of the benchmark transition-metal complex Fe(CO)(5) in solution, that the photo-induced removal of CO generates the 16-electron Fe(CO)(4) species, a homogeneous catalyst(12,13) with an electron deficiency at the Fe centre(14,15), in a hitherto unreported excited singlet state that either converts to the triplet ground state or combines with a CO or solvent molecule to regenerate a penta-coordinated Fe species on a sub-picosecond timescale. This finding, which resolves the debate about the relative importance of different spin channels in the photochemistry of Fe(CO)(5) (refs 4, 16-20), was made possible by the ability of femtosecond X-ray spectroscopy to probe frontier-orbital interactions with atom specificity. We expect the method to be broadly applicable in the chemical sciences, and to complement approaches that probe structural dynamics in ultrafast processes.}, language = {en} } @article{VazdaCruzIgnatovaCoutoetal.2019, author = {Vaz da Cruz, Vin{\´i}cius and Ignatova, Nina and Couto, Rafael and Fedotov, Daniil and Rehn, Dirk R. and Savchenko, Viktoriia and Norman, Patrick and {\AA}gren, Hans and Polyutov, Sergey and Niskanen, Johannes and Eckert, Sebastian and Jay, Raphael Martin and Fondell, Mattis and Schmitt, Thorsten and Pietzsch, Annette and F{\"o}hlisch, Alexander and Odelius, Michael and Kimberg, Victor and Gel'mukhanov, Faris}, title = {Nuclear dynamics in resonant inelastic X-ray scattering and X-ray absorption of methanol}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {150}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {23}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.5092174}, pages = {20}, year = {2019}, abstract = {We report on a combined theoretical and experimental study of core-excitation spectra of gas and liquid phase methanol as obtained with the use of X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS). The electronic transitions are studied with computational methods that include strict and extended second-order algebraic diagrammatic construction [ADC(2) and ADC(2)-x], restricted active space second-order perturbation theory, and time-dependent density functional theory-providing a complete assignment of the near oxygen K-edge XAS. We show that multimode nuclear dynamics is of crucial importance for explaining the available experimental XAS and RIXS spectra. The multimode nuclear motion was considered in a recently developed "mixed representation" where dissociative states and highly excited vibrational modes are accurately treated with a time-dependent wave packet technique, while the remaining active vibrational modes are described using Franck-Condon amplitudes. Particular attention is paid to the polarization dependence of RIXS and the effects of the isotopic substitution on the RIXS profile in the case of dissociative core-excited states. Our approach predicts the splitting of the 2a RIXS peak to be due to an interplay between molecular and pseudo-atomic features arising in the course of transitions between dissociative core- and valence-excited states. The dynamical nature of the splitting of the 2a peak in RIXS of liquid methanol near pre-edge core excitation is shown. The theoretical results are in good agreement with our liquid phase measurements and gas phase experimental data available from the literature. (C) 2019 Author(s).}, language = {en} } @article{VazdaCruzErtanCoutoetal.2017, author = {Vaz da Cruz, Vinicius and Ertan, Emelie and Couto, Rafael C. and Eckert, Sebastian and Fondell, Mattis and Dantz, Marcus and Kennedy, Brian and Schmitt, Thorsten and Pietzsch, Annette and Guimaraes, Freddy F. and {\AA}gren, Hans and Odelius, Michael and F{\"o}hlisch, Alexander and Kimberg, Victor}, title = {A study of the water molecule using frequency control over nuclear dynamics in resonant X-ray scattering}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {19}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c7cp01215b}, pages = {19573 -- 19589}, year = {2017}, abstract = {In this combined theoretical and experimental study we report a full analysis of the resonant inelastic X-ray scattering (RIXS) spectra of H2O, D2O and HDO. We demonstrate that electronically-elastic RIXS has an inherent capability to map the potential energy surface and to perform vibrational analysis of the electronic ground state in multimode systems. We show that the control and selection of vibrational excitation can be performed by tuning the X-ray frequency across core-excited molecular bands and that this is clearly reflected in the RIXS spectra. Using high level ab initio electronic structure and quantum nuclear wave packet calculations together with high resolution RIXS measurements, we discuss in detail the mode coupling, mode localization and anharmonicity in the studied systems.}, language = {en} } @article{VazdaCruzEckertIannuzzietal.2019, author = {Vaz da Cruz, Vinicius and Eckert, Sebastian and Iannuzzi, Marcella and Ertan, Emelie and Pietzsch, Annette and Couto, Rafael C. and Niskanen, Johannes and Fondell, Mattis and Dantz, Marcus and Schmitt, Thorsten and Lu, Xingye and McNally, Daniel and Jay, Raphael Martin and Kimberg, Victor and F{\"o}hlisch, Alexander and Odelius, Michael}, title = {Probing hydrogen bond strength in liquid water by resonant inelastic X-ray scattering}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-019-08979-4}, pages = {9}, year = {2019}, abstract = {Local probes of the electronic ground state are essential for understanding hydrogen bonding in aqueous environments. When tuned to the dissociative core-excited state at the O1s pre-edge of water, resonant inelastic X-ray scattering back to the electronic ground state exhibits a long vibrational progression due to ultrafast nuclear dynamics. We show how the coherent evolution of the OH bonds around the core-excited oxygen provides access to high vibrational levels in liquid water. The OH bonds stretch into the long-range part of the potential energy curve, which makes the X-ray probe more sensitive than infra-red spectroscopy to the local environment. We exploit this property to effectively probe hydrogen bond strength via the distribution of intramolecular OH potentials derived from measurements. In contrast, the dynamical splitting in the spectral feature of the lowest valence-excited state arises from the short-range part of the OH potential curve and is rather insensitive to hydrogen bonding.}, language = {en} } @article{SunHenniesPietzschetal.2011, author = {Sun, Y. -P. and Hennies, Franz and Pietzsch, Annette and Kennedy, B. and Schmitt, Thorsten and Strocov, Vladimir N. and Andersson, Joakim and Berglund, Martin and Rubensson, Jan-Erik and Aidas, K. and Gel'mukhanov, F. and Odelius, Michael and F{\"o}hlisch, Alexander}, title = {Intramolecular soft modes and intermolecular interactions in liquid acetone}, series = {Physical review : B, Condensed matter and materials physics}, volume = {84}, journal = {Physical review : B, Condensed matter and materials physics}, number = {13}, publisher = {American Physical Society}, address = {College Park}, issn = {1098-0121}, doi = {10.1103/PhysRevB.84.132202}, pages = {4}, year = {2011}, abstract = {Resonant inelastic x-ray scattering spectra excited at the O1s(-1)pi* resonance of liquid acetone are presented. Scattering to the electronic ground state shows a resolved vibrational progression where the dominant contribution is due to the C-O stretching mode, thus demonstrating a unique sensitivity of the method to the local potential energy surface in complex molecular systems. For scattering to electronically excited states, soft vibrational modes and, to a smaller extent, intermolecular interactions give a broadening, which blurs the vibrational fine structure. It is predicted that environmental broadening is dominant in aqueous acetone.}, language = {en} } @article{PremontSchwarzSchreckIannuzzietal.2015, author = {Premont-Schwarz, Mirabelle and Schreck, Simon and Iannuzzi, Marcella and Nibbering, Erik T. J. and Odelius, Michael and Wernet, Philippe}, title = {Correlating Infrared and X-ray Absorption Energies for Molecular-Level Insight into Hydrogen Bond Making and Breaking in Solution}, series = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, volume = {119}, journal = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, number = {25}, publisher = {American Chemical Society}, address = {Washington}, issn = {1520-6106}, doi = {10.1021/acs.jpcb.5b02954}, pages = {8115 -- 8124}, year = {2015}, abstract = {While ubiquitous, the making and breaking of hydrogen bonds in solution is notoriously difficult to study due to the associated complex changes of nuclear and electronic structures. With the aim to reduce the according uncertainty in correlating experimental observables and hydrogen-bond configurations, we combine the information from proximate methods to study the N-H center dot center dot center dot O hydrogen bond in solution. We investigate hydrogen-bonding of the N-H group of N-methylaniline with oxygen from liquid DMSO and acetone with infrared spectra in the N-H stretching region and X-ray absorption spectra at the N K-edge. We experimentally observe blue shifts of the infrared stretching band and an X-ray absorption pre-edge peak when going from DMSO to acetone. With ab initio molecular dynamics simulations and calculated spectra, we qualitatively reproduce the experimental observables but we do not reach quantitative agreement with experiment. The infrared spectra support the notion of weakening the N-H center dot center dot center dot O hydrogen bond from DMSO to acetone. However, we fail to theoretically reproduce the measured shift of the X-ray absorption pre-edge peak. We discuss possible shortcomings of the simulation models and spectrum calculations. Common features and distinct differences with the O-H center dot center dot center dot O hydrogen bond are highlighted, and the implications for monitoring hydrogen-bond breaking in solution are discussed.}, language = {en} } @article{NorellEckertVanKuikenetal.2019, author = {Norell, Jesper and Eckert, Sebastian and Van Kuiken, Benjamin E. and F{\"o}hlisch, Alexander and Odelius, Michael}, title = {Ab initio simulations of complementary K-edges and solvatization effects for detection of proton transfer in aqueous 2-thiopyridone}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {151}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {11}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.5109840}, pages = {12}, year = {2019}, abstract = {The nitrogen and sulfur K-edge X-ray absorption spectra of aqueous 2-thiopyridone, a model system for excited-state proton transfer in several recent time-resolved measurements, have been simulated from ab initio molecular dynamics. Spectral signatures of the local intra- and inter-molecular structure are identified and rationalized, which facilitates experimental interpretation and optimization. In particular, comparison of aqueous and gas phase spectrum simulations assesses the previously unquantified solvatization effects, where hydrogen bonding is found to yield solvatochromatic shifts up to nearly 1 eV of the main peak positions. Thereby, while each K-edge can still decisively determine the local protonation of its core-excited site, only their combined, complementary fingerprints allow separating all of the three relevant molecular forms, giving a complete picture of the proton transfer.}, language = {en} } @article{LeitnerJosefssonMazzaetal.2018, author = {Leitner, T. and Josefsson, Ida and Mazza, T. and Miedema, Piter S. and Schr{\"o}der, H. and Beye, Martin and Kunnus, Kristjan and Schreck, S. and D{\"u}sterer, Stefan and F{\"o}hlisch, Alexander and Meyer, M. and Odelius, Michael and Wernet, Philippe}, title = {Time-resolved electron spectroscopy for chemical analysis of photodissociation}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {149}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {4}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.5035149}, pages = {12}, year = {2018}, abstract = {The prototypical photoinduced dissociation of Fe(CO)(5) in the gas phase is used to test time-resolved x-ray photoelectron spectroscopy for studying photochemical reactions. Upon one-photon excitation at 266 nm, Fe(CO)(5) successively dissociates to Fe(CO)(4) and Fe(CO)(3) along a pathway where both fragments retain the singlet multiplicity of Fe(CO)(5). The x-ray free-electron laser FLASH is used to probe the reaction intermediates Fe(CO)(4) and Fe(CO)(3) with time-resolved valence and core-level photoelectron spectroscopy, and experimental results are interpreted with ab initio quantum chemical calculations. Changes in the valence photoelectron spectra are shown to reflect changes in the valenceorbital interactions upon Fe-CO dissociation, thereby validating fundamental theoretical concepts in Fe-CO bonding. Chemical shifts of CO 3 sigma inner-valence and Fe 3 sigma core-level binding energies are shown to correlate with changes in the coordination number of the Fe center. We interpret this with coordination-dependent charge localization and core-hole screening based on calculated changes in electron densities upon core-hole creation in the final ionic states. This extends the established capabilities of steady-state electron spectroscopy for chemical analysis to time-resolved investigations. It could also serve as a benchmark for howcharge and spin density changes in molecular dissociation and excited-state dynamics are expressed in valence and core-level photoelectron spectroscopy. Published by AIP Publishing.}, language = {en} }