@article{ZollerBethBinosietal.2005, author = {Zoller, Peter and Beth, Thomas and Binosi, D. and Blatt, Rainer and Briegel, Hans J. and Bruss, D. and Calarco, Tommaso and Cirac, Juan Ignacio and Deutsch, David and Eisert, Jens and Ekert, Artur and Fabre, Claude and Gisin, Nicolas and Grangiere, P. and Grassl, Markus and Haroche, Serge and Imamoglu, Atac and Karlson, A. and Kempe, Julia and Kouwenhoven, Leo P. and Kr{\"o}ll, S. and Leuchs, Gerd and Lewenstein, Maciej and Loss, Daniel and L{\"u}tkenhaus, Norbert and Massar, Serge and Mooij, J. E. and Plenio, Martin Bodo and Polzik, Eugene and Popescu, Sandu and Rempe, Gerhard and Sergienko, Alexander and Suter, David and Twamley, John and Wendin, G{\"o}ran and Werner, Reinhard F. and Winter, Andreas and Wrachtrup, J{\"o}rg and Zeilinger, Anton}, title = {Quantum information processing and communication : Strategic report on current status, visions and goals for research in Europe}, issn = {1434-6060}, year = {2005}, abstract = {We present an excerpt of the document "Quantum Information Processing and Communication: Strategic report on current status, visions and goals for research in Europe", which has been recently published in electronic form at the website of FET (the Future and Emerging Technologies Unit of the Directorate General Information Society of the European Commission, http://www.cordis.lu/ist/fet/qipc-sr.htm). This document has been elaborated, following a former suggestion by FET, by a committee of QIPC scientists to provide input towards the European Commission for the preparation of the Seventh Framework Program. Besides being a document addressed to policy makers and funding agencies (both at the European and national level), the document contains a detailed scientific assessment of the state-of-the-art, main research goals, challenges, strengths, weaknesses, visions and perspectives of all the most relevant QIPC sub-fields, that we report here}, language = {en} } @article{YangEisert2009, author = {Yang, Dong and Eisert, Jens}, title = {Entanglement combing}, issn = {0031-9007}, doi = {10.1103/Physrevlett.103.220501}, year = {2009}, abstract = {We show that all multipartite pure states can, under local operations, be transformed into bipartite pairwise entangled states in a "lossless fashion": An arbitrary distinguished party will keep pairwise entanglement with all other parties after the asymptotic protocol-decorrelating all other parties from each other-in a way that the degree of entanglement of this party with respect to the rest will remain entirely unchanged. The set of possible entanglement distributions of bipartite pairs is also classified. Finally, we point out several applications of this protocol as a useful primitive in quantum information theory.}, language = {en} } @article{WolfEisert2005, author = {Wolf, M. M. and Eisert, Jens}, title = {Classical information capacity of a class of quantum channels}, issn = {1367-2630}, year = {2005}, abstract = {We consider the additivity of the minimal output entropy and the classical information capacity of a class of quantum channels. For this class of channels, the norm of the output is maximized for the output being a normalized projection. We prove the additivity of the minimal output Renyi entropies with entropic parameters alpha is an element of [ 0, 2], generalizing an argument by Alicki and Fannes, and present a number of examples in detail. In order to relate these results to the classical information capacity, we introduce a weak form of covariance of a channel. We then identify various instances of weakly covariant channels for which we can infer the additivity of the classical information capacity. Both additivity results apply to the case of an arbitrary number of different channels. Finally, we relate the obtained results to instances of bi-partite quantum states for which the entanglement cost can be calculated}, language = {en} } @article{SerafiniEisertWolf2005, author = {Serafini, A. and Eisert, Jens and Wolf, M. M.}, title = {Multiplicativity of maximal output purities of Gaussian channels under Gaussian inputs}, year = {2005}, abstract = {We address the question of the multiplicativity of the maximal p-norm output purities of bosonic Gaussian channels under Gaussian inputs. We focus on general Gaussian channels resulting from the reduction of unitary dynamics in larger Hilbert spaces. It is shown that the maximal output purity of tensor products of single-mode channels under Gaussian inputs is multiplicative for any p is an element of (1, infinity) for products of arbitrary identical channels as well as for a large class of products of different channels. In the case of p=2, multiplicativity is shown to be true for arbitrary products of generic channels acting on any number of modes}, language = {en} } @article{SchuchHarrisonOsborneetal.2011, author = {Schuch, Norbert and Harrison, Sarah K. and Osborne, Tobias J. and Eisert, Jens}, title = {Information propagation for interacting-particle systems}, series = {Physical review : A, Atomic, molecular, and optical physics}, volume = {84}, journal = {Physical review : A, Atomic, molecular, and optical physics}, number = {3}, publisher = {American Physical Society}, address = {College Park}, issn = {1050-2947}, doi = {10.1103/PhysRevA.84.032309}, pages = {5}, year = {2011}, abstract = {We study the speed at which information propagates through systems of interacting quantum particles moving on a regular lattice and show that for a certain class of initial conditions there exists a maximum speed of sound at which information can propagate. Our argument applies equally to quantum spins, bosons such as in the Bose-Hubbard model, fermions, anyons, and general mixtures thereof, on arbitrary lattices of any dimension. It also pertains to dissipative dynamics on the lattice, and generalizes to the continuum for quantum fields. Our result can be seen as an analog of the Lieb-Robinson bound for strongly correlated models.}, language = {en} } @misc{RaederEisertWilkensetal.2005, author = {R{\"a}der, Andy and Eisert, Jens and Wilkens, Martin and Schmidt, Robert and Micka, Bettina and Ostermeyer, Martin and Zill, R{\"u}diger and Baur, J{\"u}rgen and Schmidt, Renate and Leppin, Karin and Slotowski, Agnes and Resch-Esser, Ursula}, title = {Portal = Albert Einsteins Erbe: Uni-Physiker forschen weiter}, number = {01-03/2005}, organization = {Universit{\"a}t Potsdam, Referat f{\"u}r Presse- und {\"O}ffentlichkeitsarbeit}, issn = {1618-6893}, doi = {10.25932/publishup-43984}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-439846}, pages = {55}, year = {2005}, abstract = {Aus dem Inhalt: - Albert Einsteins Erbe: Uni-Physiker forschen weiter - Uni-Studiengang im europ{\"a}ischen Exzellenzprogramm - Sternenstaubsammler - Mit Einfallsreichtum gegen den Trend}, language = {de} } @article{RieraGogolinEisert2012, author = {Riera, Arnau and Gogolin, Christian and Eisert, Jens}, title = {Thermalization in nature and on a quantum computer}, series = {Physical review letters}, volume = {108}, journal = {Physical review letters}, number = {8}, publisher = {American Physical Society}, address = {College Park}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.108.080402}, pages = {5}, year = {2012}, abstract = {In this work, we show how Gibbs or thermal states appear dynamically in closed quantum many-body systems, building on the program of dynamical typicality. We introduce a novel perturbation theorem for physically relevant weak system-bath couplings that is applicable even in the thermodynamic limit. We identify conditions under which thermalization happens and discuss the underlying physics. Based on these results, we also present a fully general quantum algorithm for preparing Gibbs states on a quantum computer with a certified runtime and error bound. This complements quantum Metropolis algorithms, which are expected to be efficient but have no known runtime estimates and only work for local Hamiltonians.}, language = {en} } @article{PlenioHartleyEisert2004, author = {Plenio, M. B. and Hartley, J. and Eisert, Jens}, title = {Dynamics and manipulation of entanglement in coupled harmonic systems with many degrees of freedom}, issn = {1367-2630}, year = {2004}, abstract = {We study the entanglement dynamics of a system consisting of a large number of coupled harmonic oscillators in various configurations and for different types of nearest-neighbour interactions. For a one-dimensional chain, we provide compact analytical solutions and approximations to the dynamical evolution of the entanglement between spatially separated oscillators. Key properties such as the speed of entanglement propagation, the maximum amount of transferred entanglement and the efficiency for the entanglement transfer are computed. For harmonic oscillators coupled by springs, corresponding to a phonon model, we observe a non-monotonic transfer efficiency in the initially prepared amount of entanglement, i.e. an intermediate amount of initial entanglement is transferred with the highest efficiency. In contrast, within the framework of the rotating-wave approximation (as appropriate, e.g. in quantum optical settings) one finds a monotonic behaviour. We also study geometrical configurations that are analogous to quantum optical devices (such as beamsplitters and interferometers) and observe characteristic differences when initially thermal or squeezed states are entering these devices. We show that these devices may be switched on and off by changing the properties of an individual oscillator. They may therefore be used as building blocks of large fixed and pre-fabricated but programmable structures in which quantum information is manipulated through propagation. We discuss briefly possible experimental realizations of systems of interacting harmonic oscillators in which these effects may be confirmed experimentally}, language = {en} } @article{OstermeyerKornPuhlmannetal.2009, author = {Ostermeyer, Martin and Korn, Dietmar and Puhlmann, Dirk and Henkel, Carsten and Eisert, Jens}, title = {Two-dimensional characterization of spatially entangled photon pairs}, issn = {0950-0340}, doi = {10.1080/09500340903359962}, year = {2009}, abstract = {We characterize the entanglement in position and momentum of photon pairs generated in type-II parametric down- conversion. Coincidence maps of the photon positions in the near-field and far-field planes are observed in two transverse dimensions using scanning fiber probes. We estimate the covariance matrix of an effective two-mode system and apply criteria for entanglement based on covariance matrices to certify space-momentum entanglement. The role of higher- order spatial modes for observing spatial entanglement between the two photons is discussed.}, language = {en} } @article{OrusLatorreEisertetal.2006, author = {Orus, Roman and Latorre, Jose Ignacio and Eisert, Jens and Cramer, Marcus}, title = {Half the entanglement in critical systems is distillable from a single specimen}, doi = {10.1103/Physreva.73.060303}, year = {2006}, abstract = {We establish a quantitative relationship between the entanglement content of a single quantum chain at a critical point and the corresponding entropy of entanglement. We find that, surprisingly, the leading critical scaling of the single-copy entanglement with respect to any bipartitioning is exactly one-half of the entropy of entanglement, in a general setting of conformal field theory and quasifree systems. Conformal symmetry imposes that the single-copy entanglement scales as E-1(rho(L))=(c/6)ln L-(c/6)(pi(2)/ln L)+O(1/L), where L is the number of constituents in a block of an infinite chain and c denotes the central charge. This shows that from a single specimen of a critical chain, already half the entanglement can be distilled compared to the rate that is asymptotically available. The result is substantiated by a quantitative analysis for all translationally invariant quantum spin chains corresponding to all isotropic quasifree fermionic models. An example of the XY spin chain shows that away from criticality the above relation is maintained only near the quantum phase transition}, language = {en} }