@article{BastianRobelSchmidtetal.2021, author = {Bastian, Philipp U. and Robel, Nathalie and Schmidt, Peter and Schrumpf, Tim and G{\"u}nter, Christina and Roddatis, Vladimir and Kumke, Michael U.}, title = {Resonance energy transfer to track the motion of lanthanide ions}, series = {Biosensors : open access journal}, volume = {11}, journal = {Biosensors : open access journal}, number = {12}, publisher = {MDPI}, address = {Basel}, issn = {2079-6374}, doi = {10.3390/bios11120515}, pages = {23}, year = {2021}, abstract = {The imagination of clearly separated core-shell structures is already outdated by the fact, that the nanoparticle core-shell structures remain in terms of efficiency behind their respective bulk material due to intermixing between core and shell dopant ions. In order to optimize the photoluminescence of core-shell UCNP the intermixing should be as small as possible and therefore, key parameters of this process need to be identified. In the present work the Ln(III) ion migration in the host lattices NaYF4 and NaGdF4 was monitored. These investigations have been performed by laser spectroscopy with help of lanthanide resonance energy transfer (LRET) between Eu(III) as donor and Pr(III) or Nd(III) as acceptor. The LRET is evaluated based on the Forster theory. The findings corroborate the literature and point out the migration of ions in the host lattices. Based on the introduced LRET model, the acceptor concentration in the surrounding of one donor depends clearly on the design of the applied core-shell-shell nanoparticles. In general, thinner intermediate insulating shells lead to higher acceptor concentration, stronger quenching of the Eu(III) donor and subsequently stronger sensitization of the Pr(III) or the Nd(III) acceptors. The choice of the host lattice as well as of the synthesis temperature are parameters to be considered for the intermixing process.}, language = {en} } @article{BastianNacakRoddatisetal.2020, author = {Bastian, Philipp U. and Nacak, Selma and Roddatis, Vladimir and Kumke, Michael Uwe}, title = {Tracking the motion of lanthanide ions within core-shell-shell NaYF4 nanocrystals via resonance energy transfer}, series = {The journal of physical chemistry : C}, volume = {124}, journal = {The journal of physical chemistry : C}, number = {20}, publisher = {American Chemical Society}, address = {Washington, DC}, issn = {1932-7447}, doi = {10.1021/acs.jpcc.0c02588}, pages = {11229 -- 11238}, year = {2020}, abstract = {Lanthanide resonance energy transfer (LRET) was used to investigate the motion of dopant ions during the synthesis of core-shell-shell-nanocrystals (NCs) that are frequently used as frequency upconversion materials. Reaction conditions (temperature, solvent) as well as lattice composition and precursors were adapted from a typical hydrothermal synthesis approach used to obtain upconversion nanoparticles (UCNPs). Instead of adding the lanthanide ions Yb3+/Er3+ as the sensitizer/activator couple, Eu3+/Nd3+ as the donor/acceptor were added as the LRET pair to the outer shell (Eu-3) and the core (Nd-3). By tailoring the thickness of the insulation shell ("middle shell"), the expected distance between the donor and the acceptor was increased beyond 2 R-0, a distance for which no LRET is expected. The successful synthesis of core- shell-shell NCs with different thicknesses of the insulation layer was demonstrated by high-resolution transmission electron microscopy measurement. The incorporation of the Eu3+ ions into the NaYF4 lattice was investigated by high-resolution time-resolved luminescence measurements. Two major Eu3+ species (bulk and surface) were found. This was supported by steady-state as well as time-resolved luminescence data. Based on the luminescence decay kinetics, the intermixing of lanthanides during synthesis of core- shell UCNPs was evaluated. The energy transfer between Eu3+ (donor) and Nd3+ (acceptor) ions was exploited to quantify the motion of the dopant ions. This investigation reveals the migration of Ln(3+) ions between different compatiments in core-shell NCs and affects the concept of using core-shell architectures to increase the efficiency of UCNPs. In order to obtain well-separated core and shell structures with different dopants, alternative concepts are needed.}, language = {en} } @article{BartoloniJinMarcaidaetal.2015, author = {Bartoloni, Marco and Jin, Xian and Marcaida, Maria Jos{\´e} and Banha, Joao and Dibonaventura, Ivan and Bongoni, Swathi and Bartho, Kathrin and Gr{\"a}bner, Olivia and Sefkow, Michael and Darbre, Tamis and Reymond, Jean-Louis}, title = {Bridged bicyclic peptides as potential drug scaffolds}, series = {Chemical Science}, volume = {10}, journal = {Chemical Science}, number = {6}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2041-6520}, doi = {10.1039/C5SC01699A}, pages = {5473 -- 5490}, year = {2015}, abstract = {Double cyclization of short linear peptides obtained by solid phase peptide synthesis was used to prepare bridged bicyclic peptides (BBPs) corresponding to the topology of bridged bicyclic alkanes such as norbornane. Diastereomeric norbornapeptides were investigated by 1H-NMR, X-ray crystallography and CD spectroscopy and found to represent rigid globular scaffolds stabilized by intramolecular backbone hydrogen bonds with scaffold geometries determined by the chirality of amino acid residues and sharing structural features of β-turns and α-helices. Proteome profiling by capture compound mass spectrometry (CCMS) led to the discovery of the norbornapeptide 27c binding selectively to calmodulin as an example of a BBP protein binder. This and other BBPs showed high stability towards proteolytic degradation in serum.}, language = {en} } @article{BartlettJankunasGoswamietal.2011, author = {Bartlett, Nate C. -M. and Jankunas, Justin and Goswami, Tapas and Zare, Richard N. and Bouakline, Foudhil and Althorpe, Stuart C.}, title = {Differential cross sections for H + D-2 -> HD(v '=2, j '=0,3,6,9) + D at center-of-mass collision energies of 1.25, 1.61, and 1.97 eV}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {13}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {18}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c0cp02460k}, pages = {8175 -- 8179}, year = {2011}, abstract = {We have measured differential cross sections (DCSs) for the reaction H + D-2 -> HD- (v' = 2, j' = 0,3,6,9) + D at center-of-mass collision energies E-coll of 1.25, 1.61, and 1.97 eV using the photoloc technique. The DCSs show a strong dependence on the product rotational quantum number. For the HD(v' = 2, j' = 0) product, the DCS is bimodal but becomes oscillatory as the collision energy is increased. For the other product states, they are dominated by a single peak, which shifts from back to sideward scattering as j' increases, and they are in general less sensitive to changes in the collision energy. The experimental results are compared to quantum mechanical calculations and show good, but not fully quantitative agreement.}, language = {en} } @article{BarthelDuvinage1996, author = {Barthel, Helmut and Duvinage, Brigitte}, title = {Entz{\"u}nden von Ethanol durch Ozon}, year = {1996}, language = {de} } @article{Barthel1996, author = {Barthel, Helmut}, title = {Ozon - experimentell untersucht}, year = {1996}, language = {de} } @article{Barthel1996, author = {Barthel, Helmut}, title = {Ein Modellexperiment zur Herstellung von Branntkalk im Schachtofen}, year = {1996}, language = {de} } @article{BarthSiegmannBeuermannetal.2012, author = {Barth, Johannes and Siegmann, Rebekka and Beuermann, Sabine and Russell, Gregory T. and Buback, Michael}, title = {Investigations into chain-length-dependent termination in bulk radical polymerization of 1H, 1H, 2H, 2H-Tridecafluorooctyl methacrylate}, series = {Macromolecular chemistry and physics}, volume = {213}, journal = {Macromolecular chemistry and physics}, number = {1}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {1022-1352}, doi = {10.1002/macp.201100479}, pages = {19 -- 28}, year = {2012}, abstract = {The SP-PLP-EPR technique is used to carry out a detailed investigation of the radical termination kinetics of 1H, 1H, 2H, 2H-tridecafluorooctyl methacrylate (TDFOMA) in bulk at relatively low conversion. Composite-model behavior for chain-length-dependent termination rate coefficients, kti,i, is observed. It is found that for TDFOMA, ic approximate to 60 independent of temperature, and as approximate to 0.65 and al approximate to 0.2 at 80 degrees C and above. However, at lower temperatures the situation is strikingly different, with the significantly higher average values of as = 0.89 +/- 0.15 and al = 0.32 +/- 0.10 being obtained at 50 degrees C and below. This makes TDFOMA the first monomer to be found that exhibits clearly different exponent values, as and al, at lower and higher temperature, and that has both a high as, like an acrylate, and a high ic, like a methacrylate.}, language = {en} } @article{BartaSzatmariFueloepetal.2016, author = {Barta, Petra and Szatmari, Istvan and Fueloep, Ferenc and Heydenreich, Matthias and Koch, Andreas and Kleinpeter, Erich}, title = {Synthesis and stereochemistry of new naphth[1,3]oxazino[3,2-a] benzazepine and naphth[1,3]oxazino[3,2-e]thienopyridine derivatives}, series = {Tetrahedron}, volume = {72}, journal = {Tetrahedron}, publisher = {Elsevier}, address = {Oxford}, issn = {0040-4020}, doi = {10.1016/j.tet.2016.03.058}, pages = {2402 -- 2410}, year = {2016}, abstract = {Through the reactions of 1- or 2-naphthol and 4,5-dihydro-3H-benz[c]azepine or 6,7-dihydrothieno[3,2-c]pyridine, new aminonaphthol derivatives were prepared. The syntheses were extended by using N-containing naphthol analogues such as 5-hydroxyisoquinoline and 6-hydroxyquinoline. The ring closures of the novel bifunctional compounds were also achieved, resulting in new naphth[2,1-e][1,3]oxazines, naphth[1,2-e][1,3]oxazines, isoquinolino[5,6-e][1,3]oxazines and quinolino[5,6-e][1,3]oxazines. H-1 NMR spectra of the target heterocycles 16, 20 and 21 were sufficiently resolved to indentify the present stereochemistry; therefore, beside computed structures, spatial experimental (dipolar coupling-NOE) and computed (ring current effect of the naphthyl moiety-TSNMRS) NMR studies were employed. The studied heterocycles exist exclusively as S(14b),R(N), R(14b),S(N), and S(16b)S(N) isomers, respectively. The flexible moieties of the studied compounds prefer. (C) 2016 Elsevier Ltd. All rights reserved.}, language = {en} } @article{BarazaNeserJacksonetal.2016, author = {Baraza, Lilechi D. and Neser, Wekesa and Jackson, Korir Cheruiyot and Fredrick, Juma B. and Dennis, Ochieno and Wairimu, Kamau R. and Keya, Aggrey Osogo and Heydenreich, Matthias}, title = {Antimicrobial Coumarins from the Oyster Culinary-Medicinal Mushroom, Pleurotus ostreatus (Agaricomycetes), from Kenya}, series = {International journal of medicinal mushrooms}, volume = {18}, journal = {International journal of medicinal mushrooms}, publisher = {Begell House}, address = {Danbury}, issn = {1521-9437}, doi = {10.1615/IntJMedMushrooms.v18.i10.60}, pages = {905 -- 913}, year = {2016}, abstract = {Pleurotus ostreatus has been widely used as food because of its nutritional and medicinal properties. These have been attributed to the presence of macronutrients, minerals, vitamins, and amino acids, among other secondary metabolites. There are, however, few reports on the antimicrobial activities of different classes of purified compounds from P. ostreatus. This led to the current study, the objective of which was to chemically characterize the antibiotic activities of P. ()streams against selected human pathogenic bacteria and endophytic fungi. Chemical structures were determined using spectroscopic methods and by comparison with values of related structures reported in the literature. Pure compounds from P. ostreatus were tested in vitro against pathogenic bacteria (Staphylococcus aureus and Escherichia coli) and endophytic fungi (Pencillium digitatum and Fusarium prolferatum). A new compound, (E)-5,7-dimethoxy-6-(3-methylbuta-1,3-dienyl)-2H-chromen-2-one (5-methoxy-(E)-suberodiene) (compound 2), along with ergosterol (compound I.) and 5,7-dimethoxy-6-(3-methylbut-2-enyl)-2H-chromen-2-one (toddaculin; compound 3), were isolated from the fruiting bodies of P. ostreatus. The growth of S. aureus,E proliferatum, and P. digitatum colonies was inhibited in media containing compound 2, with minimum inhibitory concentrations closely comparable to those of conventional antibiotics.}, language = {en} }