@article{Bhatt2014, author = {Bhatt, Kaushalendra M.}, title = {Microseisms and its impact on the marine-controlled source electromagnetic signal}, series = {Journal of geophysical research : Solid earth}, volume = {119}, journal = {Journal of geophysical research : Solid earth}, number = {12}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9313}, doi = {10.1002/2014JB011024}, pages = {8655 -- 8666}, year = {2014}, abstract = {The marine-controlled source electromagnetic method (mCSEM) is employed for studying the electrical characteristics and fluid contents of sedimentary reservoirs. However, the success rate of the method can be improved significantly by finding the sources of electromagnetic noise and addressing the challenge posed by them at larger offsets where the reservoir signal is often weak. I have studied the mCSEM data and reporting an electromagnetic noise. The strength of the noise is observed 1600 times stronger than the seafloor mCSEM signal at 0.1 Hz. Moreover, the noise and the transmitted mCSEM signals are found coherent in interstation recordings. These readings suggest the severity of the noise. The source investigation presuming the observed noise as an infragravity wave failed to match the response. Then, the role of microseisms is investigated. Microseism causes oscillation of the seafloor and produces electromagnetic disturbances by the dynamics of water. I have used various conditions for a proper discrimination of the noise as microseisms. This mechanism is clearly illustrated with the help of a conceptual diagram. The role of the directionality is part of the study, which is argued for having a significant role in the generation of microseisms. In this paper, a new algorithm is presented and is used for calculating the coherency. The algorithm helps in mapping the coherency value simultaneously in time and frequency domains.}, language = {en} } @article{BloetheMunackKorupetal.2014, author = {Bloethe, Jan H. and Munack, Henry and Korup, Oliver and Fuelling, Alexander and Garzanti, Eduardo and Resentini, Alberto and Kubik, Peter W.}, title = {Late Quaternary valley infill and dissection in the Indus River, western Tibetan Plateau margin}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {94}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2014.04.011}, pages = {102 -- 119}, year = {2014}, abstract = {The Indus, one of Earth's major rivers, drains large parts of the NW Himalaya and the Transhimalayan ranges that form part of the western Tibetan Plateau margin. In the western Himalayan syntaxis, where local topographic relief exceeds 7 km, the Indus has incised a steep bedrock gorge at rates of several mm yr(-1). Upstream, however, the upper Indus and its tributaries alternate between bedrock gorges and broad alluvial flats flanked by the Ladakh and Zanskar ranges. We review the late Quaternary valley history in this region with a focus on the confluence of the Indus and Zanskar Rivers, where vast alluvial terrace staircases and lake sediments record major episodes of aggradation and incision. New absolute dating of high-level fluvial terrace remnants using cosmogenic Be-10, optically and infrared stimulated luminescence (OSL, IRSL) indicates at least two phases of late Quaternary valley infilling. These phases commenced before similar to 200 ka and similar to 50-20 ka, judging from terrace treads stranded >150 m and similar to 30-40 m above modern river levels, respectively. Numerous stacks of lacustrine sediments that straddle the Indus River >200 km between the city of Leh and the confluence with the Shyok River share a distinct horizontal alignment. Constraints from IRSL samples of lacustrine sequences from the Leh-Spituk area reveal a protracted lake phase from >177 ka to 72 ka, locally accumulating >50-m thick deposits. In the absence of tectonic faulting, major lithological differences, and stream capture, we attribute the formation of this and other large lakes in the region to natural damming by large landslides, glaciers, and alluvial fans. The overall patchy landform age constraints from earlier studies can be reconciled by postulating a major deglacial control on sediment flux, valley infilling, and subsequent incision that has been modulated locally by backwater effects of natural damming. While comparison with Pleistocene monsoon proxies reveals no obvious correlation, a lateor post-glacial sediment pulse seems a more likely source of this widespread sedimentation that has partly buried the dissected bedrock topography. Overall, the long residence times of fluvial, alluvial and lacustrine deposits in the region (>500 ka) support previous studies, but remain striking given the dominantly steep slopes and deeply carved valleys that characterise this high-altitude mountain desert. Recalculated late Quaternary rates of fluvial bedrock incision in the Indus and Zanskar of 1.5 +/- 0.2 mm yr(-1) are at odds with the longevity of juxtaposed valley-fill deposits, unless a lack of decisive lateral fluvial erosion helps to preserve these late Pleistocene sedimentary archives. We conclude that alternating, similar to 10(4)-yr long, phases of massive infilling and incision have dominated the late Quaternary history of the Indus valley below the western Tibetan Plateau margin. (C) 2014 Elsevier Ltd. All rights reserved.}, language = {en} } @phdthesis{Borchardt2014, author = {Borchardt, Sven}, title = {Rainfall, weathering and erosion}, pages = {x, 90}, year = {2014}, language = {en} } @article{BouwerPapyrakisPoussinetal.2014, author = {Bouwer, Laurens M. and Papyrakis, Elissaios and Poussin, Jennifer and Pfurtscheller, Clemens and Thieken, Annegret}, title = {The costing of measures for natural hazard mitigation in Europe}, series = {Natural hazards review}, volume = {15}, journal = {Natural hazards review}, number = {4}, publisher = {American Society of Civil Engineers}, address = {Reston}, issn = {1527-6988}, doi = {10.1061/(ASCE)NH.1527-6996.0000133}, pages = {10}, year = {2014}, abstract = {The literature on the costing of mitigation measures for reducing impacts of natural hazards is rather fragmented. This paper provides a concise overview of the current state of knowledge in Europe on the costing of mitigation measures for the reduction of natural hazard risks (droughts, floods, storms and induced coastal hazards as well as alpine hazards) and identifies knowledge gaps and related research recommendations. Furthermore, it provides a taxonomy of related mitigation options, classifying them into nine categories: (1) management plans, land-use planning, and climate adaptation; (2) hazard modification; (3) infrastructure; (4) mitigation measures (stricto sensu); (5) communication in advance of events; (6) monitoring and early warning systems; (7) emergency response and evacuation; (8) financial incentives; and (9) risk transfer (including insurance). It is found that the costing of mitigation measures in European and in other countries has almost exclusively focused on estimating direct costs. A cost assessment framework that addresses a range of costs, possibly informed by multiple stakeholders, would provide more accurate estimates and could provide better guidance to decision makers. (C) 2014 American Society of Civil Engineers.}, language = {en} } @article{BraeuerAschHofstetteretal.2014, author = {Braeuer, Benjamin and Asch, G{\"u}nter and Hofstetter, Rami and Haberland, Christian and Jaser, D. and El-Kelani, R. and Weber, Michael H.}, title = {Detailed seismicity analysis revealing the dynamics of the southern Dead Sea area}, series = {Journal of seismology}, volume = {18}, journal = {Journal of seismology}, number = {4}, publisher = {Springer}, address = {Dordrecht}, issn = {1383-4649}, doi = {10.1007/s10950-014-9441-4}, pages = {731 -- 748}, year = {2014}, abstract = {Within the framework of the international DESIRE (DEad Sea Integrated REsearch) project, a dense temporary local seismological network was operated in the southern Dead Sea area. During 18 recording months, 648 events were detected. Based on an already published tomography study clustering, focal mechanisms, statistics and the distribution of the microseismicity in relation to the velocity models from the tomography are analysed. The determined b value of 0.74 leads to a relatively high risk of large earthquakes compared to the moderate microseismic activity. The distribution of the seismicity indicates an asymmetric basin with a vertical strike-slip fault forming the eastern boundary of the basin, and an inclined western boundary, made up of strike-slip and normal faults. Furthermore, significant differences between the area north and south of the Bokek fault were observed. South of the Bokek fault, the western boundary is inactive while the entire seismicity occurs on the eastern boundary and below the basin-fill sediments. The largest events occurred here, and their focal mechanisms represent the northwards transform motion of the Arabian plate along the Dead Sea Transform. The vertical extension of the spatial and temporal cluster from February 2007 is interpreted as being related to the locking of the region around the Bokek fault. North of the Bokek fault similar seismic activity occurs on both boundaries most notably within the basin-fill sediments, displaying mainly small events with strike-slip mechanism and normal faulting in EW direction. Therefore, we suggest that the Bokek fault forms the border between the single transform fault and the pull-apart basin with two active border faults.}, language = {en} } @article{BronstertdeAraujoBatallaVillanuevaetal.2014, author = {Bronstert, Axel and de Araujo, Jos{\`e} Carlos and Batalla Villanueva, Ramon J. and Costa, Alexandre Cunha and Delgado, Jos{\´e} Miguel Martins and Francke, Till and F{\"o}rster, Saskia and G{\"u}ntner, Andreas and Lopez-Tarazon, Jos{\´e} Andr{\´e}s and Mamede, George Leite and Medeiros, Pedro Henrique Augusto and Mueller, Eva and Vericat, Damia}, title = {Process-based modelling of erosion, sediment transport and reservoir siltation in mesoscale semi-arid catchments}, series = {Journal of soils and sediments : protection, risk assessment and remediation}, volume = {14}, journal = {Journal of soils and sediments : protection, risk assessment and remediation}, number = {12}, publisher = {Springer}, address = {Heidelberg}, issn = {1439-0108}, doi = {10.1007/s11368-014-0994-1}, pages = {2001 -- 2018}, year = {2014}, abstract = {To support scientifically sound water management in dryland environments a modelling system has been developed for the quantitative assessment of water and sediment fluxes in catchments, transport in the river system, and retention in reservoirs. The spatial scale of interest is the mesoscale because this is the scale most relevant for management of water and land resources. This modelling system comprises process-oriented hydrological components tailored for dryland characteristics coupled with components comprising hillslope erosion, sediment transport and reservoir deposition processes. The spatial discretization is hierarchically designed according to a multi-scale concept to account for particular relevant process scales. The non-linear and partly intermittent run-off generation and sediment dynamics are dealt with by accounting for connectivity phenomena at the intersections of landscape compartments. The modelling system has been developed by means of data from nested research catchments in NE-Spain and in NE-Brazil. In the semi-arid NE of Brazil sediment retention along the topography is the main process for sediment retention at all scales, i.e. the sediment delivery is transport limited. This kind of deposition retains roughly 50 to 60 \% of eroded sediment, maintaining a similar deposition proportion in all spatial scales investigated. On the other hand, the sediment retained in reservoirs is clearly related to the scale, increasing with catchment area. With increasing area, there are more reservoirs, increasing the possibility of deposition. Furthermore, the area increase also promotes an increase in flow volume, favouring the construction of larger reservoirs, which generally overflow less frequently and retain higher sediment fractions. The second example comprises a highly dynamic Mediterranean catchment in NE-Spain with nested sub-catchments and reveals the full dynamics of hydrological, erosion and deposition features. The run-off modelling performed well with only some overestimation during low-flow periods due to the neglect of water losses along the river. The simulated peaks in sediment flux are reproduced well, while low-flow sediment transport is less well captured, due to the disregard of sediment remobilization in the riverbed during low flow. This combined observation and modelling study deepened the understanding of hydro-sedimentological systems characterized by flashy run-off generation and by erosion and sediment transport pulses through the different landscape compartments. The connectivity between the different landscape compartments plays a very relevant role, regarding both the total mass of water and sediment transport and the transport time through the catchment.}, language = {en} } @article{BrosinskyFoersterSegletal.2014, author = {Brosinsky, Arlena and F{\"o}rster, Saskia and Segl, Karl and Kaufmann, Hermann}, title = {Spectral fingerprinting: sediment source discrimination and contribution modelling of artificial mixtures based on VNIR-SWIR spectral properties}, series = {Journal of soils and sediments : protection, risk assessment and remediation}, volume = {14}, journal = {Journal of soils and sediments : protection, risk assessment and remediation}, number = {12}, publisher = {Springer}, address = {Heidelberg}, issn = {1439-0108}, doi = {10.1007/s11368-014-0925-1}, pages = {1949 -- 1964}, year = {2014}, abstract = {Knowledge of the origin of suspended sediment is important for improving our understanding of sediment dynamics and thereupon support of sustainable watershed management. An direct approach to trace the origin of sediments is the fingerprinting technique. It is based on the assumption that potential sediment sources can be discriminated and that the contribution of these sources to the sediment can be determined on the basis of distinctive characteristics (fingerprints). Recent studies indicate that visible-near-infrared (VNIR) and shortwave-infrared (SWIR) reflectance characteristics of soil may be a rapid, inexpensive alternative to traditional fingerprint properties (e.g. geochemistry or mineral magnetism). To further explore the applicability of VNIR-SWIR spectral data for sediment tracing purposes, source samples were collected in the Isabena watershed, a 445 km(2) dryland catchment in the central Spanish Pyrenees. Grab samples of the upper soil layer were collected from the main potential sediment source types along with in situ reflectance spectra. Samples were dried and sieved, and artificial mixtures of known proportions were produced for algorithm validation. Then, spectral readings of potential source and artificial mixture samples were taken in the laboratory. Colour coefficients and physically based parameters were calculated from in situ and laboratory-measured spectra. All parameters passing a number of prerequisite tests were subsequently applied in discriminant function analysis for source discrimination and mixing model analyses for source contribution assessment. The three source types (i.e. badlands, forest/grassland and an aggregation of other sources, including agricultural land, shrubland, unpaved roads and open slopes) could be reliably identified based on spectral parameters. Laboratory-measured spectral fingerprints permitted the quantification of source contribution to artificial mixtures, and introduction of source heterogeneity into the mixing model decreased accuracies for some source types. Aggregation of source types that could not be discriminated did not improve mixing model results. Despite providing similar discrimination accuracies as laboratory source parameters, in situ derived source information was found to be insufficient for contribution modelling. The laboratory mixture experiment provides valuable insights into the capabilities and limitations of spectral fingerprint properties. From this study, we conclude that combinations of spectral properties can be used for mixing model analyses of a restricted number of source groups, whereas more straightforward in situ measured source parameters do not seem suitable. However, modelling results based on laboratory parameters also need to be interpreted with care and should not rely on the estimates of mean values only but should consider uncertainty intervals as well.}, language = {en} } @article{BrosinskyFoersterSegletal.2014, author = {Brosinsky, Arlena and F{\"o}rster, Saskia and Segl, Karl and Lopez-Tarazon, Jos{\´e} Andr{\´e}s and Pique, Gemma and Bronstert, Axel}, title = {Spectral fingerprinting: characterizing suspended sediment sources by the use of VNIR-SWIR spectral information}, series = {Journal of soils and sediments : protection, risk assessment and remediation}, volume = {14}, journal = {Journal of soils and sediments : protection, risk assessment and remediation}, number = {12}, publisher = {Springer}, address = {Heidelberg}, issn = {1439-0108}, doi = {10.1007/s11368-014-0927-z}, pages = {1965 -- 1981}, year = {2014}, abstract = {Knowledge of sediment sources is a prerequisite for sustainable management practices and may furthermore improve our understanding of water and sediment fluxes. Investigations have shown that a number of characteristic soil properties can be used as "fingerprints" to trace back the sources of river sediments. Spectral properties have recently been successfully used as such characteristics in fingerprinting studies. Despite being less labour-intensive than geochemical analyses, for example, spectroscopy allows measurements of small amounts of sediment material (> 60 mg), thus enabling inexpensive analyses even of intra-event variability. The focus of this study is on the examination of spectral properties of fluvial sediment samples to detect changes in source contributions, both between and within individual flood events. Sediment samples from the following three different origins were collected in the Isabena catchment (445 km(2)) in the central Spanish Pyrenees: (1) soil samples from the main potential source areas, (2) stored fine sediment from the channel bed once each season in 2011 and (3) suspended sediment samples during four flood events in autumn 2011 and spring 2012 at the catchment outlet as well as at several subcatchment outlets. All samples were dried and measured for spectral properties in the laboratory using an ASD spectroradiometer. Colour parameters and physically based features (e.g. organic carbon, iron oxide and clay content) were calculated from the spectra. Principal component analyses (PCA) were applied to all three types of samples to determine natural clustering of samples, and a mixing model was applied to determine source contributions. We found that fine sediment stored in the river bed seems to be mainly influenced by grain size and seasonal variability, while sampling location-and thus the effect of individual tributaries or subcatchments-seem to be of minor importance. Suspended sediment sources were found to vary between, as well as within, flood events; although badlands were always the major source. Forests and grasslands contributed little (< 10 \%), and other sources (not further determinable) contributed up to 40 \%. The analyses further suggested that sediment sources differ among the subcatchments and that subcatchments comprising relatively large proportions of badlands contributed most to the four flood events analyzed. Spectral fingerprints provide a rapid and cost-efficient alternative to conventional fingerprint properties. However, a combination of spectral and conventional fingerprint properties could potentially permit discrimination of a larger number of source types.}, language = {en} } @article{BruttelFriehe2014, author = {Bruttel, Lisa Verena and Friehe, Tim}, title = {Can short-term incentives induce long-lasting cooperation? Results from a public-goods experiment}, series = {Journal of behavioral and experimental economics}, volume = {53}, journal = {Journal of behavioral and experimental economics}, publisher = {Elsevier}, address = {New York}, issn = {2214-8043}, doi = {10.1016/j.socec.2014.09.001}, pages = {120 -- 130}, year = {2014}, abstract = {This paper investigates whether providing strong cooperation incentives only at the outset of a group interaction spills over to later periods to ensure cooperation in the long run. We study a repeated linear public-good game with punishment opportunities and a parameter change after the first ten (of twenty) rounds. Our data shows that cooperation among subjects who had experienced a higher marginal return on public-good contributions or low punishment costs in rounds 1-10 rapidly deteriorated in rounds 11-20 once these incentives were removed, eventually trending below the level of cooperation in the control group. This suggests the possibility of temporary incentives backfiring in the long run. This paper ties in with the literature highlighting the potentially adverse effects of the use of incentives. (C) 2014 Elsevier Inc. All rights reserved.}, language = {en} } @article{BuschMeissnerPotthoffetal.2014, author = {Busch, Jan Philip and Meissner, Tobias and Potthoff, Annegret and Oswald, Sascha}, title = {Transport of carbon colloid supported nanoscale zero-valent iron in saturated porous media}, series = {Journal of contaminant hydrology}, volume = {164}, journal = {Journal of contaminant hydrology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0169-7722}, doi = {10.1016/j.jconhyd.2014.05.006}, pages = {25 -- 34}, year = {2014}, abstract = {Injection of nanoscale zero-valent iron (nZVI) has recently gained great interest as emerging technology for in-situ remediation of chlorinated organic compounds from groundwater systems. Zero-valent iron (ZVI) is able to reduce organic compounds and to render it to less harmful substances. The use of nanoscale particles instead of granular or microscale particles can increase dechlorination rates by-orders of magnitude due to its high surface area. However, classical nZVI appears to be hampered in its environmental application by its limited mobility. One approach is colloid supported transport of nZVI, where the nZVI gets transported by a Mobile colloid. In this study transport properties of activated carbon colloid supported nZVI (c-nZVI; d(50) = 2.4 mu m) are investigated in column tests using columns of 40 cm length, which were filled with porous media. A suspension was pumped through the column under different physicochemical conditions (addition of a polyanionic stabilizer and changes in pH and ionic strength). Highest observed breakthrough was 62\% of the injected concentration in glass beads with addition of stabilizer. Addition of mono- and bivalent salt, e.g. more than 0.5 mM/L CaCl2, can decrease mobility and changes in pH to values below six can inhibit mobility at all. Measurements of colloid sizes and zeta potentials show changes in the mean particle size by a factor of ten and an increase of zeta potential from -62 mV to -80 mV during the transport experiment. However, results suggest potential applicability of c-nZVI under field conditions. (C) 2014 Elsevier B.V. All rights reserved.}, language = {en} }