@misc{GiladiMayRistowetal.2014, author = {Giladi, Itamar and May, Felix and Ristow, Michael and Jeltsch, Florian and Ziv, Yaron}, title = {Scale-dependent species-area and species-isolation relationships: a review and a test study from a fragmented semi-arid agro-ecosystem}, series = {Journal of biogeography}, volume = {41}, journal = {Journal of biogeography}, number = {6}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0305-0270}, doi = {10.1111/jbi.12299}, pages = {1055 -- 1069}, year = {2014}, abstract = {Aim Patterns that relate species richness with fragment area (the species-area relationship, SAR) and with isolation (the species-isolation relationship, SIR) are well documented. However, those that relate species density - the number of species within a standardized area - with fragment area (D-SAR) or isolation (D-SIR) have not been sufficiently explored, despite the potential for such an analysis to disentangle the underlying mechanisms of SARs and SIRs. Previous spatial theory predicts that a significant D-SAR or D-SIR is unlikely to emerge in taxa with high dispersal limitation, such as plants. Furthermore, a recent model predicts that the detection and the significance of D-SARs or D-SIRs may decrease with grain size. We combined a literature review with grain size-dependent sampling in a fragmented landscape to evaluate the prevalence and grain size-dependent nature of D-SARs and D-SIRs in plants. Location Worldwide (review) and a semi-arid agro-ecosystem in Israel (case study). Methods We combined an extensive literature review of 31 D-SAR studies of plants in fragmented landscapes with an empirical study in which we analysed grain size-dependent D-SARs and D-SIRs using a grain size-dependent hierarchical sampling of species density and species richness in a fragmented, semi-arid agro-ecosystem. Results We found that significantly increasing D-SARs are rare in plant studies. Furthermore, we found that the detection of a significant D-SAR is often possible only after the data have been stratified by species, habitat or landscape characteristics. The results from our case study indicated that the significance and the slopes of both D-SARs and D-SIRs increase as grain size decreases. Main conclusions These results call for a careful consideration of scale while analysing and interpreting the responses of species richness and species density to fragmentation. Our results suggest that grain size-dependent analyses of D-SARs and D-SIRs may help to disentangle the mechanisms that generate SARs and SIRs and may enable early detection of the effects of fragmentation on plant biodiversity.}, language = {en} } @article{KoernerPfestorfMayetal.2014, author = {Koerner, Katrin and Pfestorf, Hans and May, Felix and Jeltsch, Florian}, title = {Modelling the effect of belowground herbivory on grassland diversity}, series = {Ecological modelling : international journal on ecological modelling and engineering and systems ecolog}, volume = {273}, journal = {Ecological modelling : international journal on ecological modelling and engineering and systems ecolog}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-3800}, doi = {10.1016/j.ecolmodel.2013.10.025}, pages = {79 -- 85}, year = {2014}, abstract = {One challenging question in ecology is to explain species coexistence in highly diverse temperate grassland plant communities. Within this context, a clear understanding of the consequences of belowground herbivory for the composition and the diversity of plant communities continue to elude ecologists. The existing body of empirical evidence reveals partly contradictory responses ranging from negative to neutral or positive effects of belowground herbivory on grassland diversity. To reveal possible mechanistic grounds for these discrepancies, we extended an existing simulation model of grassland communities based on plant functional types to include root herbivory. This enabled us to test the effects of different feeding modes that represent different herbivore guilds. For each belowground feeding mode, we systematically varied the intensity and frequency of herbivory events for three different levels of soil fertility both in the presence and absence of additional aboveground grazing. Our modelling approach successfully reproduced various empirically reported diversity responses, merely on the basis of the different feeding modes. Different levels of plant resource availability affected the strength, but not the direction of the belowground herbivory effects. The only exception was the scenario with low resource levels, which promoted neutral (neither positive nor negative) diversity responses for some of the feeding modes. Interestingly, aboveground biomass production was largely unaffected by diversity changes induced by belowground herbivory except in the case of selective feeding modes that were related to specific functional traits. Our findings provide possible explanations for the broad spectrum of belowground herbivory effects on plant community diversity. Furthermore, the presented theoretical modelling approach provides a suitable conceptual framework to better understand the complex linkage between plant community and belowground herbivory dynamics.}, language = {en} } @article{WeissPfestorfMayetal.2014, author = {Weiss, Lina and Pfestorf, Hans and May, Felix and K{\"o}rner, Katrin and Boch, Steffen and Fischer, Markus and M{\"u}ller, J{\"o}rg and Prati, Daniel and Socher, Stephanie A. and Jeltsch, Florian}, title = {Grazing response patterns indicate isolation of semi-natural European grasslands}, series = {Oikos}, volume = {123}, journal = {Oikos}, number = {5}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0030-1299}, doi = {10.1111/j.1600-0706.2013.00957.x}, pages = {599 -- 612}, year = {2014}, abstract = {Identifying drivers of species diversity is a major challenge in understanding and predicting the dynamics of species-rich semi-natural grasslands. In particular in temperate grasslands changes in land use and its consequences, i.e. increasing fragmentation, the on-going loss of habitat and the declining importance of regional processes such as seed dispersal by livestock, are considered key drivers of the diversity loss witnessed within the last decades.}, language = {en} }