@article{BrauneWalterSchulzeetal.2014, author = {Braune, Steffen and Walter, M. and Schulze, F. and Lendlein, Andreas and Jung, Friedrich}, title = {Changes in platelet morphology and function during 24 hours of storage}, series = {Clinical hemorheology and microcirculation : blood flow and vessels}, volume = {58}, journal = {Clinical hemorheology and microcirculation : blood flow and vessels}, number = {1}, publisher = {IOS Press}, address = {Amsterdam}, issn = {1386-0291}, doi = {10.3233/CH-141876}, pages = {159 -- 170}, year = {2014}, abstract = {For in vitro studies assessing the interaction of platelets with implant materials, common and standardized protocols for the preparation of platelet rich plasma (PRP) are lacking, which may lead to non-matching results due to the diversity of applied protocols. Particularly, the aging of platelets during prolonged preparation and storage times is discussed to lead to an underestimation of the material thrombogenicity. Here, we study the influence of whole blood-and PRP-storage times on changes in platelet morphology and function. Whole blood PFA100 closure times increased after stimulation with collagen/ADP and collagen/epinephrine. Twenty four hours after blood collection, both parameters were prolonged pathologically above the upper limit of the reference range. Numbers of circulating platelets, measured in PRP, decreased after four hours, but no longer after twenty four hours. Mean platelet volumes (MPV) and platelet large cell ratios (P-LCR, 12 fL - 40 fL) decreased over time. Immediately after blood collection, no debris or platelet aggregates could be visualized microscopically. After four hours, first debris and very small aggregates occurred. After 24 hours, platelet aggregates and also debris progressively increased. In accordance to this, the CASY system revealed an increase of platelet aggregates (up to 90 mu m diameter)with increasing storage time. The percentage of CD62P positive platelets and PF4 increased significantly with storage time in resting PRP. When soluble ADP was added to stored PRP samples, the number of activatable platelets decreased significantly over storage time. The present study reveals the importance of a consequent standardization in the preparation of WB and PRP. Platelet morphology and function, particularly platelet reactivity to adherent or soluble agonists in their surrounding milieu, changed rapidly outside the vascular system. This knowledge is of crucial interest, particularly in the field of biomaterial development for cardiovascular applications, and may help to define common standards in the in vitro hemocompatibility testing of biomaterials.}, language = {en} } @article{NeffevonRuestenLangeBrauneetal.2014, author = {Neffe, Axel T. and von R{\"u}sten-Lange, Maik and Braune, Steffen and L{\"u}tzow, Karola and Roch, Toralf and Richau, Klaus and Kr{\"u}ger, Anne and Becherer, Tobias and Th{\"u}nemann, Andreas F. and Jung, Friedrich and Haag, Rainer and Lendlein, Andreas}, title = {Multivalent grafting of hyperbranched oligo- and polyglycerols shielding rough membranes to mediate hemocompatibility}, series = {Journal of materials chemistry : B, Materials for biology and medicine}, volume = {2}, journal = {Journal of materials chemistry : B, Materials for biology and medicine}, number = {23}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2050-750X}, doi = {10.1039/c4tb00184b}, pages = {3626 -- 3635}, year = {2014}, abstract = {Hemocompatible materials are needed for internal and extracorporeal biomedical applications, which should be realizable by reducing protein and thrombocyte adhesion to such materials. Polyethers have been demonstrated to be highly efficient in this respect on smooth surfaces. Here, we investigate the grafting of oligo- and polyglycerols to rough poly(ether imide) membranes as a polymer relevant to biomedical applications and show the reduction of protein and thrombocyte adhesion as well as thrombocyte activation. It could be demonstrated that, by performing surface grafting with oligo-and polyglycerols of relatively high polydispersity (>1.5) and several reactive groups for surface anchoring, full surface shielding can be reached, which leads to reduced protein adsorption of albumin and fibrinogen. In addition, adherent thrombocytes were not activated. This could be clearly shown by immunostaining adherent proteins and analyzing the thrombocyte covered area. The presented work provides an important strategy for the development of application relevant hemocompatible 3D structured materials.}, language = {en} } @misc{NeffevonRuestenLangeBrauneetal.2014, author = {Neffe, Axel T. and von R{\"u}sten-Lange, Maik and Braune, Steffen and L{\"u}tzow, Karola and Roch, Toralf and Richau, Klaus and Kr{\"u}ger, Anne and Becherer, Tobias and Th{\"u}nemann, Andreas F. and Jung, Friedrich and Haag, Rainer and Lendlein, Andreas}, title = {Multivalent grafting of hyperbranched oligo- and polyglycerols shielding rough membranes to mediate hemocompatibility}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-99444}, year = {2014}, abstract = {Hemocompatible materials are needed for internal and extracorporeal biomedical applications, which should be realizable by reducing protein and thrombocyte adhesion to such materials. Polyethers have been demonstrated to be highly efficient in this respect on smooth surfaces. Here, we investigate the grafting of oligo- and polyglycerols to rough poly(ether imide) membranes as a polymer relevant to biomedical applications and show the reduction of protein and thrombocyte adhesion as well as thrombocyte activation. It could be demonstrated that, by performing surface grafting with oligo- and polyglycerols of relatively high polydispersity (>1.5) and several reactive groups for surface anchoring, full surface shielding can be reached, which leads to reduced protein adsorption of albumin and fibrinogen. In addition, adherent thrombocytes were not activated. This could be clearly shown by immunostaining adherent proteins and analyzing the thrombocyte covered area. The presented work provides an important strategy for the development of application relevant hemocompatible 3D structured materials.}, language = {en} }