@article{AbdissaHeydenreichMidiwoetal.2014, author = {Abdissa, Negera and Heydenreich, Matthias and Midiwo, Jacob O. and Ndakala, Albert and Majer, Zsuzsanna and Neumann, Beate and Stammler, Hans-Georg and Sewald, Norbert and Yenesew, Abiy}, title = {A xanthone and a phenylanthraquinone from the roots of Bulbine frutescens, and the revision of six seco-anthraquinones into xanthones}, series = {Phytochemistry letters}, volume = {9}, journal = {Phytochemistry letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1874-3900}, doi = {10.1016/j.phytol.2014.04.004}, pages = {67 -- 73}, year = {2014}, abstract = {Phytochemical investigation of the dichloromethane/methanol (1:1) extract of the roots of Bulbine frutescens led to the isolation of a new xanthone, 8-hydroxy-6-methylxanthone-1-carboxylic acid (1) and a new phenylanthraquinone, 6',8-O-dimethylknipholone (2) along with six known compounds. The structures were elucidated on the basis of NMR and MS spectral data analyses. The structure of compound 1 was confirmed through X-ray crystallography which was then used as a reference to propose the revision of the structures of six seco-anthraquinones into xanthones. The isolated compounds were evaluated for cytotoxicity against human cervix carcinoma KB-3-1 cells with the phenylanthraquinone knipholone being the most active (IC50 = 0.43 mu M). Two semi-synthetic knipholone derivatives, knipholone Mannich base and knipholone-1,3-oxazine, were prepared and tested for cytotoxic activity; both showed moderate activities (IC50 value of 1.89 and 2.50 mu M, respectively). (C) 2014 Phytochemical Society of Europe. Published by Elsevier B.V. All rights reserved.}, language = {en} } @article{AtilawHeydenreichNdakalaetal.2014, author = {Atilaw, Yoseph and Heydenreich, Matthias and Ndakala, Albert and Akala, Hoseah M. and Kamau, Edwin and Yenesew, Abiy}, title = {3-Oxo-14 alpha, 15 alpha-epoxyschizozygine: A new schizozygane indoline alkaloid from Schizozygia coffaeoides}, series = {Phytochemistry letters}, volume = {10}, journal = {Phytochemistry letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1874-3900}, doi = {10.1016/j.phytol.2014.07.003}, pages = {28 -- 31}, year = {2014}, abstract = {The stem bark extract of Schizozygia coffaeoides (Apocynaceae) showed moderate antiplasmodial activity (IC50 = 8-12 mu g/mL) against the chloroquine-sensitive (D6) and chloroquine-resistant (W2) strains of Plasmodium falciparum. Chromatographic separation of the extract led to the isolation of a new schizozygane indoline alkaloid, named 3-oxo-14 alpha, 15 alpha-epoxyschizozygine. In addition, two dimeric anthraquinones, cassiamin A and cassiamin B, were identified for the first time in the family Apocynaceae. The structures of the isolated compounds were deduced on the basis of spectroscopic evidence. The schizozygane indole alkaloids showed good to moderate antiplasmodial activities (IC50 = 13-52 mu m). (C) 2014 Phytochemical Society of Europe. Published by Elsevier B.V. All rights reserved.}, language = {en} } @article{DereseBarasaAkalaetal.2014, author = {Derese, Solomon and Barasa, Leonard and Akala, Hoseah M. and Yusuf, Amir O. and Kamau, Edwin and Heydenreich, Matthias and Yenesew, Abiy}, title = {4 '-Prenyloxyderrone from the stem bark of Millettia oblata ssp teitensis and the antiplasmodial activities of isoflavones from some Millettia species}, series = {Phytochemistry letters}, volume = {8}, journal = {Phytochemistry letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1874-3900}, doi = {10.1016/j.phytol.2014.02.001}, pages = {69 -- 72}, year = {2014}, abstract = {The CH2Cl2/MeOH (1: 1) extract of the stem bark of Millettia oblata ssp. teitensis showed antiplasmodial activity (IC50 = 10-12 mu g/mL) against the chloroquine-sensitive (D6) and chloroquine-resistant (W2) strains of Plasmodium falciparum. Chromatographic separation of the extract led to the isolation of a new isoflavone, 4'-prenyloxyderrone (1), together with known isoflavones (8-O-methylretusin, durmillone, maximaisoflavone B, maximaisoflavone H and maximaisoflavone J), a rotenoid (tephrosin) and a triterpene (lupeol). Similar investigation of Millettia leucantha resulted in the identification of the isoflavones afrormosin and wistin, and the flavone chrysin. The identification of these compounds was based on their spectroscopic data. Five of the isoflavones isolated from these plants as well as 11 previously reported compounds from Millettia dura were tested and showed good to moderate antiplasmodial activities (IC50 = 13-53 mu M), with the new compound, 4'-prenyloxyderrone, being the most active (IC50 = 13-15 mu M).}, language = {en} } @article{MagadulaMasimbaTarimoetal.2014, author = {Magadula, Joseph J. and Masimba, Pax J. and Tarimo, Rose B. and Msengwa, Zaituni and Mbwambo, Zakariah H. and Heydenreich, Matthias and Breard, Dimitri and Richomme, Pascal}, title = {Mammea-type coumarins from Mammea usambarensis Verdc.}, series = {Biochemical systematics and ecology}, volume = {56}, journal = {Biochemical systematics and ecology}, publisher = {Elsevier}, address = {Oxford}, issn = {0305-1978}, doi = {10.1016/j.bse.2014.05.004}, pages = {65 -- 67}, year = {2014}, abstract = {Phytochemical investigations of Mammea usambarensis resulted into the isolation a delta-tocotrienol (1) and five known mammea-type coumarins (2-6). Their structures were determined by NMR, IR, and LC-MS spectroscopic methods and by comparison of their spectral and physical data with those reported previously in the literature. The presence of these compounds is consistent with the compound classes reported from other members of the genus Mammal. Compound 6 is isolated from the Mammea genus for the first time. This is the new source of mammea-type coumarin compounds while the chemotaxonomic significance of this investigation is summarized. (C) 2014 Elsevier Ltd. All rights reserved.}, language = {en} } @article{MuivaMutisyaMachariaHeydenreichetal.2014, author = {Muiva-Mutisya, Lois and Macharia, Bernard and Heydenreich, Matthias and Koch, Andreas and Akala, Hoseah M. and Derese, Solomon and Omosa, Leonidah K. and Yusuf, Amir O. and Kamau, Edwin and Yenesew, Abiy}, title = {6 alpha-Hydroxy-alpha-toxicarol and (+)-tephrodin with antiplasmodial activities from Tephrosia species}, series = {Phytochemistry letters}, volume = {10}, journal = {Phytochemistry letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1874-3900}, doi = {10.1016/j.phytol.2014.09.002}, pages = {179 -- 183}, year = {2014}, abstract = {The CH2Cl2/MeOH (1: 1) extract of the roots of Tephrosia villosa showed good antiplasmodial activity against the chloroquine-sensitive (D6) and chloroquine-resistant (W2) strains of Plasmodium falciparum with IC50 values of 3.1 +/- 0.4 and 1.3 +/- 0.3 mu g/mL, respectively. Chromatographic separation of the extract yielded a new rotenoid, 6 alpha-hydroxy-alpha-toxicarol, along with five known rotenoids, (rotenone, deguelin, sumatrol, 12 alpha-hydroxy-alpha-toxicarol and villosinol). Similar treatment of the extract of the stem of Tephrosia purpurea (IC50 = 4.1 +/- 0.4 and 1.9 +/- 0.2 mu g/mL against D6 and W2 strains of P. falciparum, respectively) yielded a new flavone having a unique substituent at C-7/C-8 [trivial name (+)-tephrodin], along with the known flavonoids tachrosin, obovatin methyl ether and derrone. The relative configuration and the most stable conformation in (+)-tephrodin was determined by NMR and theoretical energy calculations. The rotenoids and flavones tested showed good to moderate antiplasmodial activities (IC50 = 9 +/- 23 mu M). Whereas the cytotoxicity of rotenoids is known, the flavones (+)-tephrodin and tachrosin did not show significant cytotoxicity (IC50 > 100 mu M;) against mammalian African monkey kidney (vero) and human larynx carcinoma (HEp2) cell lines. (C) 2014 Phytochemical Society of Europe. Published by Elsevier B.V. All rights reserved.}, language = {en} } @article{OmosaAmuguneNdundaetal.2014, author = {Omosa, Leonidah K. and Amugune, Beatrice and Ndunda, Beth and Milugo, Trizah K. and Heydenreich, Matthias and Yenesew, Abiy and Midiwo, Jacob O.}, title = {Antimicrobial flavonoids and diterpenoids from Dodonaea angustifolia}, series = {South African journal of botany : an international interdisciplinary journal for botanical sciences}, volume = {91}, journal = {South African journal of botany : an international interdisciplinary journal for botanical sciences}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0254-6299}, doi = {10.1016/j.sajb.2013.11.012}, pages = {58 -- 62}, year = {2014}, language = {en} } @article{ShainyanMoskalikHeydenreichetal.2014, author = {Shainyan, Bagrat A. and Moskalik, Mikhail Yu and Heydenreich, Matthias and Kleinpeter, Erich}, title = {Conformational equilibrium and dynamic behavior of bis-N-triflyl substituted 3,8-diazabicyclo[3.2.1]octane}, series = {Magnetic resonance in chemistry}, volume = {52}, journal = {Magnetic resonance in chemistry}, number = {8}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0749-1581}, doi = {10.1002/mrc.4086}, pages = {448 -- 452}, year = {2014}, abstract = {Restricted rotation about the N-S partial double bonds in a bis-N-triflyl substituted 3,8-diazabicyclo[3.2.1]octane derivative 1 has been frozen at low temperature (Delta G* = 11.6 kcal mol(-1)), and the existence of all four rotamers about the two N-S bonds, 3-in, 8-in, 3-in, 8-out, 3-out, 8-in, and 3-out, 8-out, respectively, proved experimentally by NMR spectroscopy and theoretically by DFT and MP2 calculations. Copyright (C) 2014 John Wiley \& Sons, Ltd.}, language = {en} }