@misc{EngbertNuthmannRichteretal.2005, author = {Engbert, Ralf and Nuthmann, Antje and Richter, Eike M. and Kliegl, Reinhold}, title = {SWIFT: A Dynamical Model of Saccade Generation during Reading}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-57145}, year = {2005}, abstract = {Mathematical models have become an important tool for understanding the control of eye movements during reading. Main goals of the development of the SWIFT model (Engbert, Longtin, \& Kliegl, 2002)were to investigate the possibility of spatially distributed processing and to implement a general mechanism for all types of eye movements we observe in reading experiments. Here, we present an advanced version of SWIFT which integrates properties of the oculomotor system and effects of word recognition to explain many of the experimental phenomena faced in reading research. We propose new procedures for the estimation of model parameters and for the test of the model's performance. A mathematical analysis of the dynamics of the SWIFT model is presented. Finally, within this framework, we present an analysis of the transition from parallel to serial processing.}, language = {en} } @article{EngbertNuthmannRichteretal.2005, author = {Engbert, Ralf and Nuthmann, Antje and Richter, Eike M. and Kliegl, Reinhold}, title = {SWIFT : A dynamical model of saccade generation during reading}, issn = {0033-295X}, year = {2005}, abstract = {Mathematical, models,have become an important tool for understanding the control of eye movements during reading. Main goals of the development of the SWIFT model (R. Engbert, A. Longtin, \& R. Kliegl, 2002) were to investigate the possibility of spatially distributed processing and to implement a general mechanism for all types of eye movements observed in reading experiments. The authors present an advanced version of SWIFT that integrates properties of the oculomotor system and effects of word recognition to explain many of the experimental phenomena faced in reading research. They propose new procedures for the estimation of model parameters and for the test of the model's performance. They also present a mathematical analysis of the dynamics of the SWIFT model. Finally, within this framework, they present an analysis of the transition from parallel to serial processing}, language = {en} } @phdthesis{Nuthmann2005, author = {Nuthmann, Antje}, title = {The "where" and "when" of eye fixations in reading}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-7931}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {To investigate eye-movement control in reading, the present thesis examined three phenomena related to the eyes' landing position within words, (1) the optimal viewing position (OVP), (2) the preferred viewing location (PVL), and (3) the Fixation-Duration Inverted-Optimal Viewing Position (IOVP) Effect. Based on a corpus-analytical approach (Exp. 1), the influence of variables word length, launch site distance, and word frequency was systematically explored. In addition, five experimental manipulations were conducted. First, word center was identified as the OVP, that is the position within a word where refixation probability is minimal. With increasing launch site distance, however, the OVP was found to move towards the word beginning. Several possible causes of refixations were discussed. The issue of refixation saccade programming was extensively investigated, suggesting that pre-planned and directly controlled refixation saccades coexist. Second, PVL curves, that is landing position distributions, show that the eyes are systematically deviated from the OVP, due to visuomotor constraints. By far the largest influence on mean and standard deviation of the Gaussian PVL curve was exhibited by launch site distance. Third, it was investigated how fixation durations vary as a function of landing position. The IOVP effect was replicated: Fixations located at word center are longer than those falling near the edges of a word. The effect of word frequency and/or launch site distance on the IOVP function mainly consisted in a vertical displacement of the curve. The Fixation-Duration IOVP effect is intriguing because word center (the OVP) would appear to be the best place to fixate and process a word. A critical part of the current work was devoted to investigate the origin of the effect. It was suggested that the IOVP effect arises as a consequence of mislocated fixations, i.e. fixations on unintended words, which are caused by saccadic errors. An algorithm for estimating the proportion of mislocated fixations from empirical data was developed, based on extrapolations of landing position distributions beyond word boundaries. As a new central theoretical claim it was suggested that a new saccade program is started immediately if the intended target word is missed. On average, this will lead to decreased durations for mislocated fixations. Because mislocated fixations were shown to be most prevalent at the beginning and end of words, the proposed mechanism generated the inverted U-shape for fixation durations when computed as a function of landing position. The proposed mechanism for generating the effect is generally compatible with both oculomotor and cognitive models of eye-movement control in reading.}, subject = {Allgemeine Psychologie}, language = {en} } @article{NuthmannEngbertKliegl2005, author = {Nuthmann, Antje and Engbert, Ralf and Kliegl, Reinhold}, title = {Mislocated fixations during reading and the inverted optimal viewing position effect}, year = {2005}, abstract = {Refixation probability during reading is lowest near the word center, suggestive of an optimal viewing position (OVP). Counter-intuitively, fixation durations are largest at the OVP, a result called the inverted optimal viewing position (IOVP) effect [Vitu, McConkie, Kerr, \& O'Regan, (2001). Vision Research 41, 3513-3533]. Current models of eye-movement control in reading fail to reproduce the IOVP effect. We propose a simple mechanism for generating this effect based on error-correction of mislocated fixations due to saccadic errors, First, we propose an algorithm for estimating proportions of mislocated fixations from experimental data yielding a higher probability for mislocated fixations near word boundaries. Second, we assume that mislocated fixations trigger an immediate start of a new saccade program causing a decrease of associated durations. Thus, the IOVP effect could emerge as a result of a coupling between cognitive and oculomotor processes. (c) 2005 Elsevier Ltd. All rights reserved}, language = {en} }