@article{RueferGerhauserFranketal.2005, author = {Ruefer, Corinna E. and Gerhauser, C. and Frank, N. and Becker, Hans and Kulling, Sabine E.}, title = {In vitro phase II metabolism of xanthohumol by human UDP-glucuronosyltransferases and sulfotransferases}, issn = {1613-4125}, year = {2005}, abstract = {Xanthohumol (XN) is the principal prenylated flavonoid of the hop plant and has recently gained considerable interest due to its potential cancer-chemopreventive effects. However, the metabolism of XN has not yet been investigated in detail. Therefore, we studied the in vitro phase 11 metabolism of XN using nine human recombinant UDP- glucuronosyltransferases (UGT) and five sulfotransferases (SULT). The identification of the metabolites formed was elucidated using HPLC with diode array detection as well as HPLC/API-ES MS. XN was efficiently glucuronidated by UGT 1A8, 1A9, and 1A10; further important UGTs were UGT 1A1, 1A7, and 2B7. With respect to the sulfation reaction, SULT 1A1*2, 1A2, and 1E1 were the most active SULT forms. UGT 1A3, 1A4, and 1A6 as well as SULT 1A3 and 2A1 were of minor importance for the conjugation of XN. Three mono-glucuronides as well as three mono-sulfates were identified. Considering the tissue distribution of the tested UGT and SULT enzyme forms, these findings suggest a prominent role for the glucuronidation and sulfation of XN in the liver as well as in the gastrointestinal tract}, language = {en} } @article{SiciliaBubRechkemmeretal.2005, author = {Sicilia, T. and Bub, Achim and Rechkemmer, G. and Kraemer, K. and Hoppe, P. P. and Kulling, Sabine E.}, title = {Novel lycopene metabolites are detectable in plasma of preruminant calves after lycopene supplementation}, issn = {0022-3166}, year = {2005}, abstract = {Appropriate animal models such as preruminant calves are necessary to study the complex physiological functions of carotenoids and to relate them to possible health effects in humans. In this study, the bioavailability and metabolism of lycopene from 2 dietary supplements were compared. LycoVit (R) containing synthetic lycopene and Lyc-O- Mato (R) containing natural tomato oleoresin were administered to 2 groups of preruminant calves (each n = 8) for 14 d in daily doses of 15 mg of lycopene. Plasma was analyzed for carotenoids before the intervention period, directly after, and each day for 5 d after the end of the intervention. All-trans and 5-cis lycopene, and 3 lycopene metabolites not previously found in calf plasma were detected. These metabolites contributed 52\% of the total lycopene content measured at the end of the intervention period. Based on spectroscopic data, they might be hydrogenation products, which are formed from all-trans and/or 5-cis lycopene. In the LycoVit group, total lycopene concentrations were similar to 300\% higher (286 +/- 89 nmol/L) than in the Lyc-O-Mato group (72 33 nmol/L) (P < 0.001). This indicates that, unlike in humans, lycopene from LycoVit and Lyc-O-Mato does not have equal bioavailabilities in preruminant calves. Therefore, the preruminant calf may not be a suitable animal model with which to study the biological and physiological effects of lycopene}, language = {en} }