@article{AlonsoBookhagenCarrapaetal.2006, author = {Alonso, Ricardo N. and Bookhagen, Bodo and Carrapa, Barbara and Coutand, Isabelle and Haschke, Michael and Hilley, George E. and Schoenbohm, Lindsay M. and Sobel, Edward and Strecker, Manfred and Trauth, Martin H. and Villanueva, Arturo}, title = {Tectonics, climate and landscape evolution of the Southern Central Andes : the Argentine Puna Plateau and adjacent regions between 22 and 30°S}, isbn = {978-3-540- 24329-8}, year = {2006}, language = {en} } @article{AltenbachPflaumScheibeletal.1999, author = {Altenbach, Alexander V. and Pflaum, U. and Scheibel, Thomas R. and Thies, A. and Timm, M. and Trauth, Martin H.}, title = {Scaling percentages of benthic forminifera with flux rates of organic carbon}, year = {1999}, language = {en} } @article{BergnerStreckerTrauthetal.2009, author = {Bergner, Andreas G. N. and Strecker, Manfred and Trauth, Martin H. and Deino, Alan L. and Gasse, Francoise and Blisniuk, Peter Michael and Duehnforth, Miriam}, title = {Tectonic and climatic control on evolution of rift lakes in the Central Kenya Rift, East Africa}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2009.07.008}, year = {2009}, abstract = {The long-term histories of the neighboring Nakuru-Elmenteita and Naivasha lake basins in the Central Kenya Rift illustrate the relative importance of tectonic versus climatic effects on rift-lake evolution and the formation of disparate sedimentary environments. Although modem climate conditions in the Central Kenya Rift are very similar for these basins, hydrology and hydrochemistry of present-day lakes Nakuru, Elmenteita and Naivasha contrast dramatically due to tectonically controlled differences in basin geometries, catchment size, and fluvial processes. In this study, we use eighteen C-14 and Ar-40/Ar-39 dated fluvio-lacustrine sedimentary sections to unravel the spatiotemporal evolution of the lake basins in response to tectonic and climatic influences. We reconstruct paleoclimatic and ecological trends recorded in these basins based on fossil diatom assemblages and geologic field mapping. Our study shows a tendency towards increasing alkalinity and shrinkage of water bodies in both lake basins during the last million years. Ongoing volcano-tectonic segmentation of the lake basins, as well as reorganization of upstream drainage networks have led to contrasting hydrologic regimes with adjacent alkaline and freshwater conditions. During extreme wet periods in the past, such as during the early Holocene climate optimum, lake levels were high and all basins evolved toward freshwater systems. During drier periods some of these lakes revert back to alkaline conditions, while others maintain freshwater characteristics. Our results have important implications for the use and interpretation of lake sediment as climate archives in tectonically active regions and emphasize the need to deconvolve lacustrine records with respect to tectonics versus climatic forcing mechanisms.}, language = {en} } @article{BergnerTrauth2004, author = {Bergner, Andreas G. N. and Trauth, Martin H.}, title = {Comparison of the hydrologic and hydrochemical evolution of Lake Naivasha (Kenya) during three highstands between 175 and 60 kyr BP}, year = {2004}, abstract = {Three diatomite beds exposed in the Ol Njorowa Gorge south of Lake Naivasha, Central Kenya Rift, document three major lake-level highstands between 175 and 60 kyr BP. Diatom transfer-function estimates of hydrological and hydrochemical parameters suggest that a deep and large freshwater lake existed during the highstands at 135 and 80 kyr BP. In contrast, a shallower but more expanded freshwater lake existed at 110 kyr BP. The best analog for the most extreme highstand at 135 kyr BP is the highstand during the Early Holocene humid period from 10 to 6 kyr BP. The environmental conditions as reconstructed from diatom assemblages suggest long-lasting episodes of increased humidity during the high lake periods. This contrasts to the modern situation with a relatively shallow Lake Naivasha characterized by rapid water level fluctuations within a few decades. The most likely cause for the variable hydrological conditions since 175 kyr BP is orbitally driven insolation changes on the equator and increased lateral moisture transport from the ocean.}, language = {en} } @article{BergnerTrauthBookhagen2003, author = {Bergner, Andreas G. N. and Trauth, Martin H. and Bookhagen, Bodo}, title = {Magnitude of precipitation : evaporation changes in the Naivasha Basin (Kenya) during the last 150 kyrs}, year = {2003}, abstract = {We modeled the two most extreme highstands of Lake Naivasha during the last 175 k.y. to estimate potential precipitation/ evaporation changes in this basin. In a first step, the bathymetry of the paleolakes at f135 and 9 k.y. BP was reconstructed from sediment cores and surface outcrops. Second, we modeled the paleohydrologic budget during the highstands using a simplified coupled energy mass-balance model. Our results show that the hydrologic and hence the climate conditions at f135 and 9 k.y. BP were similar, but significantly different from today. The main difference is a f15\% higher value in precipitation compared to the present. An adaptation and migration of vegetation in the cause of climate changes would result in a f30\% increase in precipitation. The most likely cause for such a wetter climate at f135 and 9 k.y. BP is a more intense intertropical convergence and increased precipitation in East Africa.}, language = {en} } @article{BernerTrauthHolschneider2022, author = {Berner, Nadine and Trauth, Martin H. and Holschneider, Matthias}, title = {Bayesian inference about Plio-Pleistocene climate transitions in Africa}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {277}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2021.107287}, pages = {12}, year = {2022}, abstract = {During the last 5 Ma the Earth's ocean-atmosphere system passed through several major transitions, many of which are discussed as possible triggers for human evolution. A classic in this context is the possible influence of the closure of the Panama Strait, the intensification of Northern Hemisphere Glaciation, a stepwise increase in aridity in Africa, and the first appearance of the genus Homo about 2.5 - 2.7 Ma ago. Apart from the fact that the correlation between these events does not necessarily imply causality, many attempts to establish a relationship between climate and evolution fail due to the challenge of precisely localizing an a priori unknown number of changes potentially underlying complex climate records. The kernel-based Bayesian inference approach applied here allows inferring the location, generic shape, and temporal scale of multiple transitions in established records of Plio-Pleistocene African climate. By defining a transparent probabilistic analysis strategy, we are able to identify conjoint changes occurring across the investigated terrigenous dust records from Ocean Drilling Programme (ODP) sites in the Atlantic Ocean (ODP 659), Arabian (ODP 721/722) and Mediterranean Sea (ODP 967). The study indicates a two-step transition in the African climate proxy records at (2.35-2.10) Ma and (1.70 - 1.50) Ma, that may be associated with the reorganization of the Hadley-Walker Circulation. .}, language = {en} } @article{BookhagenHaseltonTrauth2001, author = {Bookhagen, Bodo and Haselton, Kirk R. and Trauth, Martin H.}, title = {Hydrological modelling of a Pleistocene landslide-dammed lake in the Santa Maria Basin, NW Argentina}, year = {2001}, language = {en} } @article{BorchardtTrauth2012, author = {Borchardt, Sven and Trauth, Martin H.}, title = {Remotely-sensed evapotranspiration estimates for an improved hydrological modeling of the early holocene mega-lake Suguta, northern Kenya Rift}, series = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, volume = {361}, journal = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, number = {22}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-0182}, doi = {10.1016/j.palaeo.2012.07.009}, pages = {14 -- 20}, year = {2012}, abstract = {The actual evapotranspiration is an important, but difficult to determine, element in the water balance of lakes and their catchment areas. Reliable data on evapotranspiration are not available for most lake basins for which paleoclimate reconstructions and modeling have been performed, particularly those in remote parts of Africa. We have used thermal infrared multispectral data for 14 ASTER scenes from the TERRA satellite to estimate the actual evapotranspiration in the 12,800 km(2) catchment of the Suguta Valley, northern Kenya Rift Evidence from sediments and paleo-shorelines indicates that, during the African Humid Period (AHP, 14.8 to 5.5 kyrs BP), this valley contained a large lake, 280 m deep and covering similar to 2200 km(2), which has now virtually disappeared. Evapotranspiration estimates for the Suguta Basin were generated using the Surface Energy Balance Algorithm for Land (SEBAL). Climate data required for the model were extracted from a high-resolution gridded dataset obtained from the Climatic Research Unit (East Anglia, UK). Results suggest significant spatial variations in evapotranspiration within the catchment area (ranging from 450 mm/yr in the basin to the north to 2000 mm/yr in more elevated areas) and precipitation that was similar to 20\% higher during the AHP than in recent times. These results are in agreement with other estimates of paleo-precipitation in East Africa. The extreme response of the lake system (similar to 280 m greater water depth than today, and a lake surface area of 2200 km(2)) to only moderately higher precipitation illustrates the possible sensitivity of this area to future climate change.}, language = {en} } @article{BorchardtTrauth2021, author = {Borchardt, Sven and Trauth, Martin H.}, title = {Erratum to: Borchardt, Sven, Trauth, Martin H.: Remotely-sensed evapotranspiration estimates for an improved hydrological modeling of the early Holocene mega-lake Suguta, northern Kenya Rift. - (Palaeogeography, Palaeoclimatology, Palaeoecology. - Volumes 361-362 (2012), S. 14 - 20. - doi.org/10.1016/j.palaeo.2012.07.009)}, series = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, volume = {571}, journal = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-0182}, doi = {10.1016/j.palaeo.2019.109540}, pages = {1}, year = {2021}, language = {en} } @article{CohenCampisanoArrowsmithetal.2016, author = {Cohen, Andrew and Campisano, C. and Arrowsmith, J. Ram{\´o}n and Asrat, Asfawossen and Behrensmeyer, A. K. and Deino, A. and Feibel, C. and Hill, A. and Johnson, R. and Kingston, J. and Lamb, Henry F. and Lowenstein, T. and Noren, A. and Olago, D. and Owen, R. B. and Potts, R. and Reed, Kate and Renaut, R. and Sch{\"a}bitz, Frank and Tiercelin, J. -J. and Trauth, Martin H. and Wynn, J. and Ivory, S. and Brady, K. and Rodysill, J. and Githiri, J. and Russell, J. and F{\"o}rster, Verena and Dommain, Ren{\´e} and Rucina, S. and Deocampo, D. and Russell, J. and Billingsley, A. and Beck, C. and Dorenbeck, G. and Dullo, L. and Feary, D. and Garello, D. and Gromig, R. and Johnson, T. and Junginger, A. and Karanja, M. and Kimburi, E. and Mbuthia, A. and McCartney, T. and McNulty, E. and Muiruri, V. and Nambiro, E. and Negash, E. W. and Njagi, D. and Wilson, J. N. and Rabideaux, N. and Raub, T. and Sier, M. J. and Smith, P. and Urban, J. and Warren, M. and Yadeta, M. and Yost, C. and Zinaye, B.}, title = {The Hominin Sites and Paleolakes Drilling Project: inferring the environmental context of human evolution from eastern African rift lake deposits}, series = {Scientific Drilling}, volume = {21}, journal = {Scientific Drilling}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1816-8957}, doi = {10.5194/sd-21-1-2016}, pages = {1 -- 16}, year = {2016}, abstract = {The role that climate and environmental history may have played in influencing human evolution has been the focus of considerable interest and controversy among paleoanthropologists for decades. Prior attempts to understand the environmental history side of this equation have centered around the study of outcrop sediments and fossils adjacent to where fossil hominins (ancestors or close relatives of modern humans) are found, or from the study of deep sea drill cores. However, outcrop sediments are often highly weathered and thus are unsuitable for some types of paleoclimatic records, and deep sea core records come from long distances away from the actual fossil and stone tool remains. The Hominin Sites and Paleolakes Drilling Project (HSPDP) was developed to address these issues. The project has focused its efforts on the eastern African Rift Valley, where much of the evidence for early hominins has been recovered. We have collected about 2 km of sediment drill core from six basins in Kenya and Ethiopia, in lake deposits immediately adjacent to important fossil hominin and archaeological sites. Collectively these cores cover in time many of the key transitions and critical intervals in human evolutionary history over the last 4 Ma, such as the earliest stone tools, the origin of our own genus Homo, and the earliest anatomically modern Homo sapiens. Here we document the initial field, physical property, and core description results of the 2012-2014 HSPDP coring campaign.}, language = {en} }