@article{AbbasVranicHoffmannetal.2018, author = {Abbas, Ioana M. and Vranic, Marija and Hoffmann, Holger and El-Khatib, Ahmed H. and Montes-Bay{\´o}n, Mar{\´i}a and M{\"o}ller, Heiko Michael and Weller, Michael G.}, title = {Investigations of the Copper Peptide Hepcidin-25 by LC-MS/MS and NMR⁺}, series = {International Journal of Molecular Sciences}, volume = {19}, journal = {International Journal of Molecular Sciences}, number = {8}, publisher = {Molecular Diversity Preservation International}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms19082271}, pages = {16}, year = {2018}, abstract = {Hepcidin-25 was identified as themain iron regulator in the human body, and it by binds to the sole iron-exporter ferroportin. Studies showed that the N-terminus of hepcidin is responsible for this interaction, the same N-terminus that encompasses a small copper(II) binding site known as the ATCUN (amino-terminal Cu(II)- and Ni(II)-binding) motif. Interestingly, this copper-binding property is largely ignored in most papers dealing with hepcidin-25. In this context, detailed investigations of the complex formed between hepcidin-25 and copper could reveal insight into its biological role. The present work focuses on metal-bound hepcidin-25 that can be considered the biologically active form. The first part is devoted to the reversed-phase chromatographic separation of copper-bound and copper-free hepcidin-25 achieved by applying basic mobile phases containing 0.1\% ammonia. Further, mass spectrometry (tandemmass spectrometry (MS/MS), high-resolutionmass spectrometry (HRMS)) and nuclear magnetic resonance (NMR) spectroscopy were employed to characterize the copper-peptide. Lastly, a three-dimensional (3D)model of hepcidin-25with bound copper(II) is presented. The identification of metal complexes and potential isoforms and isomers, from which the latter usually are left undetected by mass spectrometry, led to the conclusion that complementary analytical methods are needed to characterize a peptide calibrant or referencematerial comprehensively. Quantitative nuclear magnetic resonance (qNMR), inductively-coupled plasma mass spectrometry (ICP-MS), ion-mobility spectrometry (IMS) and chiral amino acid analysis (AAA) should be considered among others.}, language = {en} } @misc{AbbasVranicHoffmannetal.2019, author = {Abbas, Ioana M. and Vranic, Marija and Hoffmann, Holger and El-Khatib, Ahmed H. and Montes-Bay{\´o}n, Mar{\´i}a and M{\"o}ller, Heiko Michael and Weller, Michael G.}, title = {Investigations of the Copper Peptide Hepcidin-25 by LC-MS/MS and NMR⁺}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {701}, issn = {1866-8372}, doi = {10.25932/publishup-42792}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427926}, year = {2019}, abstract = {Hepcidin-25 was identified as themain iron regulator in the human body, and it by binds to the sole iron-exporter ferroportin. Studies showed that the N-terminus of hepcidin is responsible for this interaction, the same N-terminus that encompasses a small copper(II) binding site known as the ATCUN (amino-terminal Cu(II)- and Ni(II)-binding) motif. Interestingly, this copper-binding property is largely ignored in most papers dealing with hepcidin-25. In this context, detailed investigations of the complex formed between hepcidin-25 and copper could reveal insight into its biological role. The present work focuses on metal-bound hepcidin-25 that can be considered the biologically active form. The first part is devoted to the reversed-phase chromatographic separation of copper-bound and copper-free hepcidin-25 achieved by applying basic mobile phases containing 0.1\% ammonia. Further, mass spectrometry (tandemmass spectrometry (MS/MS), high-resolutionmass spectrometry (HRMS)) and nuclear magnetic resonance (NMR) spectroscopy were employed to characterize the copper-peptide. Lastly, a three-dimensional (3D)model of hepcidin-25with bound copper(II) is presented. The identification of metal complexes and potential isoforms and isomers, from which the latter usually are left undetected by mass spectrometry, led to the conclusion that complementary analytical methods are needed to characterize a peptide calibrant or referencematerial comprehensively. Quantitative nuclear magnetic resonance (qNMR), inductively-coupled plasma mass spectrometry (ICP-MS), ion-mobility spectrometry (IMS) and chiral amino acid analysis (AAA) should be considered among others.}, language = {en} } @article{HolertYuecelJagmannetal.2016, author = {Holert, Johannes and Y{\"u}cel, Onur and Jagmann, Nina and Prestel, Andreas and M{\"o}ller, Heiko Michael and Philipp, Bodo}, title = {Identification of bypass reactions leading to the formation of one central steroid degradation intermediate in metabolism of different bile salts in Pseudomonas sp strain Chol1}, series = {Environmental microbiology}, volume = {18}, journal = {Environmental microbiology}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1462-2912}, doi = {10.1111/1462-2920.13192}, pages = {3373 -- 3389}, year = {2016}, language = {en} } @article{KastlBraunPresteletal.2015, author = {Kastl, Johanna and Braun, Joachim and Prestel, Andreas and M{\"o}ller, Heiko Michael and Huhn, Thomas and Mayer, Thomas U.}, title = {Mad2 Inhibitor-1 (M2I-1): A Small Molecule Protein-Protein Interaction Inhibitor Targeting the Mitotic Spindle Assembly Checkpoint}, series = {ACS chemical biology}, volume = {10}, journal = {ACS chemical biology}, number = {7}, publisher = {American Chemical Society}, address = {Washington}, issn = {1554-8929}, doi = {10.1021/acschembio.5b00121}, pages = {1661 -- 1666}, year = {2015}, abstract = {The genetic integrity of each organism depends on the faithful segregation of its genome during mitosis. To meet this challenge, a cellular surveillance mechanism, termed the spindle assembly checkpoint (SAC), evolved that monitors the correct attachment of chromosomes and blocks progression through mitosis if corrections are needed. While the central role of the SAC for genome integrity is well established, its functional dissection has been hampered by the limited availability of appropriate small molecule inhibitors. Using a fluorescence polarization-based screen, we identify Mad2 inhibitor-1 (M2I-1), the first small molecule inhibitor targeting the binding of Mad2 to Cdc20, an essential protein-protein interaction (PPI) within the SAC. Based on computational and biochemical analyses, we propose that M2I-1 disturbs conformational dynamics of Mad2 critical for complex formation with Cdc20. Cellular studies revealed that M2I-1 weakens the SAC response, indicating that the compound might be active in cells. Thus, our study identifies the SAC specific complex formation between Mad2 and Cdc20 as a protein-protein interaction that can be targeted by small molecules.}, language = {en} } @article{MadaniAnghileriHeydenreichetal.2022, author = {Madani, Amiera and Anghileri, Lucia and Heydenreich, Matthias and M{\"o}ller, Heiko Michael and Pieber, Bartholom{\"a}us}, title = {Benzylic fluorination induced by a charge-transfer complex with a solvent-dependent selectivity switch}, series = {Organic letters / publ. by the American Chemical Society}, volume = {24}, journal = {Organic letters / publ. by the American Chemical Society}, number = {29}, publisher = {American Chemical Society}, address = {Washington}, issn = {1523-7060}, doi = {10.1021/acs.orglett.2c02050}, pages = {5376 -- 5380}, year = {2022}, abstract = {We present a divergent strategy for the fluorination of phenylacetic acid derivatives that is induced by a charge-transfer complex between Selectfluor and 4-(dimethylamino)pyridine. A comprehensive investigation of the conditions revealed a critical role of the solvent on the reaction outcome. In the presence of water, decarboxylative fluorination through a single-electron oxidation is dominant. Non-aqueous conditions result in the clean formation of alpha-fluoro-alpha-arylcarboxylic acids.}, language = {en} } @article{MaierPoluektovJesteretal.2016, author = {Maier, Stefan K. and Poluektov, Georgiy and Jester, Stefan-S. and M{\"o}ller, Heiko Michael and Hoeger, Sigurd}, title = {Fast Oxidative Cyclooligomerization towards Low- and High-Symmetry Thiophene Macrocycles}, series = {Chemistry - a European journal}, volume = {22}, journal = {Chemistry - a European journal}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0947-6539}, doi = {10.1002/chem.201503211}, pages = {1379 -- 1384}, year = {2016}, abstract = {Macrocycles with quaterthiophene subunits were obtained by cyclooligomerization by direct oxidative coupling of unsubstituted dithiophene moieties. The rings were closed with high selectivity by an \&\#945;,\&\#946;\&\#8242;-connection of the thiophenes as proven by NMR spectroscopy. The reaction of the precursor with terthiophene moieties yielded the symmetric \&\#945;,\&\#945;\&\#8242;-linked macrocycle in low yield together with various differently connected isomers. Blocking of the \&\#946;-position of the half-rings yielded selectively the \&\#945;,\&\#945;\&\#8242;-linked macrocycle. Selected cyclothiophenes were investigated by scanning tunneling microscopy, which displayed the formation of highly ordered 2D crystalline monolayers.}, language = {en} } @article{PrestelMoeller2016, author = {Prestel, Andreas and M{\"o}ller, Heiko Michael}, title = {Spatio-temporal control of cellular uptake achieved by photoswitchable cell-penetrating peptides}, series = {Chemical communications}, volume = {52}, journal = {Chemical communications}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1359-7345}, doi = {10.1039/c5cc06848g}, pages = {701 -- 704}, year = {2016}, abstract = {The selective uptake of compounds into specific cells of interest is a major objective in cell biology and drug delivery. By incorporation of a novel, thermostable azobenzene moiety we generated peptides that can be switched optically between an inactive state and an active, cell-penetrating state with excellent spatio-temporal control.}, language = {en} } @misc{PrestelMoeller2015, author = {Prestel, Andreas and M{\"o}ller, Heiko Michael}, title = {Spatio-temporal control of cellular uptake achieved by photoswitchable cell-penetrating peptides}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-89658}, pages = {701 -- 704}, year = {2015}, abstract = {The selective uptake of compounds into specific cells of interest is a major objective in cell biology and drug delivery. By incorporation of a novel, thermostable azobenzene moiety we generated peptides that can be switched optically between an inactive state and an active, cell-penetrating state with excellent spatio-temporal control.}, language = {en} } @article{PrestelMoeller2015, author = {Prestel, Andreas and M{\"o}ller, Heiko Michael}, title = {Spatio-temporal control of cellular uptake achieved by photoswitchable cell-penetrating peptides}, series = {Chemical communications : ChemComm}, journal = {Chemical communications : ChemComm}, number = {52}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1364-548X}, doi = {10.1039/C5CC06848G}, pages = {701 -- 704}, year = {2015}, abstract = {The selective uptake of compounds into specific cells of interest is a major objective in cell biology and drug delivery. By incorporation of a novel, thermostable azobenzene moiety we generated peptides that can be switched optically between an inactive state and an active, cell-penetrating state with excellent spatio-temporal control.}, language = {en} } @article{SamahaHamdoCongetal.2020, author = {Samaha, Doaa and Hamdo, Housam H. and Cong, Xiaojing and Schumacher, Fabian and Banhart, Sebastian and Aglar, {\"O}znur and M{\"o}ller, Heiko Michael and Heuer, Dagmar and Kleuser, Burkhard and Saied, Essa M. and Arenz, Christoph}, title = {Liposomal FRET assay identifies potent drug-like inhibitors of the Ceramide Transport Protein (CERT)}, series = {Chemistry - a European journal}, volume = {26}, journal = {Chemistry - a European journal}, number = {70}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0947-6539}, doi = {10.1002/chem.202003283}, pages = {16616 -- 16621}, year = {2020}, abstract = {Ceramide transfer protein (CERT) mediates non-vesicular transfer of ceramide from endoplasmic reticulum to Golgi apparatus and thus catalyzes the rate-limiting step of sphingomyelin biosynthesis. Usually, CERT ligands are evaluated in tedious binding assays or non-homogenous transfer assays using radiolabeled ceramides. Herein, a facile and sensitive assay for CERT, based on Forster resonance energy transfer (FRET), is presented. To this end, we mixed donor and acceptor vesicles, each containing a different fluorescent ceramide species. By CERT-mediated transfer of fluorescent ceramide, a FRET system was established, which allows readout in 96-well plate format, despite the high hydrophobicity of the components. Screening of a 2 000 compound library resulted in two new potent CERT inhibitors. One is approved for use in humans and one is approved for use in animals. Evaluation of cellular activity by quantitative mass spectrometry and confocal microscopy showed inhibition of ceramide trafficking and sphingomyelin biosynthesis.}, language = {en} }