@article{MorosovGoesselHartje1999, author = {Morosov, Andrej and G{\"o}ssel, Michael and Hartje, Hendrik}, title = {Reduced area overhead of the input party for code-disjoint circuits}, year = {1999}, language = {en} } @article{MorosovSaposhnikovGoessel1998, author = {Morosov, Andrej and Saposhnikov, V. V. and G{\"o}ssel, Michael}, title = {Self-Checking circuits with unidiectionally independent outputs}, year = {1998}, language = {en} } @article{MorosovSaposhnikovSaposhnikovetal.1997, author = {Morosov, Andrej and Saposhnikov, Vl. V. and Saposhnikov, V. V. and G{\"o}ssel, Michael}, title = {Design of self dual fault-secure combinational circuits}, year = {1997}, language = {en} } @article{MoschaninSaposhnikovSaposhnikovetal.1996, author = {Moschanin, Wladimir and Saposhnikov, Vl. V. and Saposhnikov, Va. V. and G{\"o}ssel, Michael}, title = {Synthesis of self-dual multi-output combinational circuits for on-line Teting}, year = {1996}, language = {en} } @article{MoshaninOtscheretnijDimitriev1998, author = {Moshanin, Vl. and Otscheretnij, Vitalij and Dimitriev, Alexej}, title = {The impact of logic optimization on concurrent error detection}, year = {1998}, language = {en} } @article{MuellerVigarioMeineckeetal.2004, author = {M{\"u}ller, Klaus-Robert and Vigario, R. and Meinecke, Frank C. and Ziehe, Andreas}, title = {Blind source separation techniques for decomposing event-related brain signals}, issn = {0218-1274}, year = {2004}, abstract = {Recently blind source separation (BSS) methods have been highly successful when applied to biomedical data. This paper reviews the concept of BSS and demonstrates its usefulness in the context of event-related MEG measurements. In a first experiment we apply BSS to artifact identification of raw MEG data and discuss how the quality of the resulting independent component projections can be evaluated. The second part of our study considers averaged data of event-related magnetic fields. Here, it is particularly important to monitor and thus avoid possible overfitting due to limited sample size. A stability assessment of the BSS decomposition allows to solve this task and an additional grouping of the BSS components reveals interesting structure, that could ultimately be used for gaining a better physiological modeling of the data}, language = {en} } @article{NaujokatNeubauerLamprechtetal.2014, author = {Naujokat, Stefan and Neubauer, Johannes and Lamprecht, Anna-Lena and Steffen, Bernhard and Joerges, Sven and Margaria, Tiziana}, title = {Simplicity-first model-based plug-in development}, series = {Software : practice \& experience}, volume = {44}, journal = {Software : practice \& experience}, number = {3}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0038-0644}, doi = {10.1002/spe.2243}, pages = {277 -- 297}, year = {2014}, abstract = {In this article, we present our experience with over a decade of strict simplicity orientation in the development and evolution of plug-ins. The point of our approach is to enable our graphical modeling framework jABC to capture plug-in development in a domain-specific setting. The typically quite tedious and technical plug-in development is shifted this way from a programming task to the modeling level, where it can be mastered also by application experts without programming expertise. We show how the classical plug-in development profits from a systematic domain-specific API design and how the level of abstraction achieved this way can be further enhanced by defining adequate building blocks for high-level plug-in modeling. As the resulting plug-in models can be compiled and deployed automatically, our approach decomposes plug-in development into three phases where only the realization phase requires plug-in-specific effort. By using our modeling framework jABC, this effort boils down to graphical, tool-supported process modeling. Furthermore, we support the automatic completion of process sketches for executability. All this will be illustrated along the most recent plug-in-based evolution of the jABC framework, which witnessed quite some bootstrapping effects.}, language = {en} } @article{NeumannStoffelHartjeetal.1999, author = {Neumann, I. and Stoffel, Dominik and Hartje, Hendrik and Kunz, Wolfgang}, title = {Cell replication and redundancy elimination during placement for cycle time optimization}, year = {1999}, language = {en} } @article{NicolasSchaub1998, author = {Nicolas, Pascal and Schaub, Torsten}, title = {The XRay system : an implementation platform for local query-answering in default logics}, isbn = {3-540-65312-0}, year = {1998}, language = {en} } @article{NienhausDoellner2005, author = {Nienhaus, Marc and D{\"o}llner, J{\"u}rgen Roland Friedrich}, title = {Depicting dynamics using principles of visual art and narration's}, issn = {0272-1716}, year = {2005}, language = {en} }