@article{AhmadShoaibPrinetto2015, author = {Ahmad, Nadeem and Shoaib, Umar and Prinetto, Paolo}, title = {Usability of Online Assistance From Semiliterate Users' Perspective}, series = {International journal of human computer interaction}, volume = {31}, journal = {International journal of human computer interaction}, number = {1}, publisher = {Taylor \& Francis Group}, address = {Philadelphia}, issn = {1044-7318}, doi = {10.1080/10447318.2014.925772}, pages = {55 -- 64}, year = {2015}, language = {en} } @article{ChildsGrimbsSelbig2015, author = {Childs, Dorothee and Grimbs, Sergio and Selbig, Joachim}, title = {Refined elasticity sampling for Monte Carlo-based identification of stabilizing network patterns}, series = {Bioinformatics}, volume = {31}, journal = {Bioinformatics}, number = {12}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {1367-4803}, doi = {10.1093/bioinformatics/btv243}, pages = {214 -- 220}, year = {2015}, abstract = {Motivation: Structural kinetic modelling (SKM) is a framework to analyse whether a metabolic steady state remains stable under perturbation, without requiring detailed knowledge about individual rate equations. It provides a representation of the system's Jacobian matrix that depends solely on the network structure, steady state measurements, and the elasticities at the steady state. For a measured steady state, stability criteria can be derived by generating a large number of SKMs with randomly sampled elasticities and evaluating the resulting Jacobian matrices. The elasticity space can be analysed statistically in order to detect network positions that contribute significantly to the perturbation response. Here, we extend this approach by examining the kinetic feasibility of the elasticity combinations created during Monte Carlo sampling. Results: Using a set of small example systems, we show that the majority of sampled SKMs would yield negative kinetic parameters if they were translated back into kinetic models. To overcome this problem, a simple criterion is formulated that mitigates such infeasible models. After evaluating the small example pathways, the methodology was used to study two steady states of the neuronal TCA cycle and the intrinsic mechanisms responsible for their stability or instability. The findings of the statistical elasticity analysis confirm that several elasticities are jointly coordinated to control stability and that the main source for potential instabilities are mutations in the enzyme alpha-ketoglutarate dehydrogenase.}, language = {en} } @inproceedings{CurzonKalasSchubertetal.2015, author = {Curzon, Paul and Kalas, Ivan and Schubert, Sigrid and Schaper, Niclas and Barnes, Jan and Kennewell, Steve and Br{\"o}ker, Kathrin and Kastens, Uwe and Magenheim, Johannes and Dagiene, Valentina and Stupuriene, Gabriele and Ellis, Jason Brent and Abreu-Ellis, Carla Reis and Grillenberger, Andreas and Romeike, Ralf and Haugsbakken, Halvdan and Jones, Anthony and Lewin, Cathy and McNicol, Sarah and Nelles, Wolfgang and Neugebauer, Jonas and Ohrndorf, Laura and Schaper, Niclas and Schubert, Sigrid and Opel, Simone and Kramer, Matthias and Trommen, Michael and Pottb{\"a}cker, Florian and Ilaghef, Youssef and Passig, David and Tzuriel, David and Kedmi, Ganit Eshel and Saito, Toshinori and Webb, Mary and Weigend, Michael and Bottino, Rosa and Chioccariello, Augusto and Christensen, Rhonda and Knezek, Gerald and Gioko, Anthony Maina and Angondi, Enos Kiforo and Waga, Rosemary and Ohrndorf, Laura and Or-Bach, Rachel and Preston, Christina and Younie, Sarah and Przybylla, Mareen and Romeike, Ralf and Reynolds, Nicholas and Swainston, Andrew and Bendrups, Faye and Sysło, Maciej M. and Kwiatkowska, Anna Beata and Zieris, Holger and Gerstberger, Herbert and M{\"u}ller, Wolfgang and B{\"u}chner, Steffen and Opel, Simone and Schiller, Thomas and Wegner, Christian and Zender, Raphael and Lucke, Ulrike and Diethelm, Ira and Syrbe, J{\"o}rn and Lai, Kwok-Wing and Davis, Niki and Eickelmann, Birgit and Erstad, Ola and Fisser, Petra and Gibson, David and Khaddage, Ferial and Knezek, Gerald and Micheuz, Peter and Kloos, Carlos Delgado}, title = {KEYCIT 2014}, editor = {Brinda, Torsten and Reynolds, Nicholas and Romeike, Ralf and Schwill, Andreas}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-292-6}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-70325}, pages = {438}, year = {2015}, abstract = {In our rapidly changing world it is increasingly important not only to be an expert in a chosen field of study but also to be able to respond to developments, master new approaches to solving problems, and fulfil changing requirements in the modern world and in the job market. In response to these needs key competencies in understanding, developing and using new digital technologies are being brought into focus in school and university programmes. The IFIP TC3 conference "KEYCIT - Key Competences in Informatics and ICT (KEYCIT 2014)" was held at the University of Potsdam in Germany from July 1st to 4th, 2014 and addressed the combination of key competencies, Informatics and ICT in detail. The conference was organized into strands focusing on secondary education, university education and teacher education (organized by IFIP WGs 3.1 and 3.3) and provided a forum to present and to discuss research, case studies, positions, and national perspectives in this field.}, language = {en} } @article{FichteSzeider2015, author = {Fichte, Johannes Klaus and Szeider, Stefan}, title = {Backdoors to tractable answer set programming}, series = {Artificial intelligence}, volume = {220}, journal = {Artificial intelligence}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0004-3702}, doi = {10.1016/j.artint.2014.12.001}, pages = {64 -- 103}, year = {2015}, abstract = {Answer Set Programming (ASP) is an increasingly popular framework for declarative programming that admits the description of problems by means of rules and constraints that form a disjunctive logic program. In particular, many Al problems such as reasoning in a nonmonotonic setting can be directly formulated in ASP. Although the main problems of ASP are of high computational complexity, complete for the second level of the Polynomial Hierarchy, several restrictions of ASP have been identified in the literature, under which ASP problems become tractable. In this paper we use the concept of backdoors to identify new restrictions that make ASP problems tractable. Small backdoors are sets of atoms that represent "clever reasoning shortcuts" through the search space and represent a hidden structure in the problem input. The concept of backdoors is widely used in theoretical investigations in the areas of propositional satisfiability and constraint satisfaction. We show that it can be fruitfully adapted to ASP. We demonstrate how backdoors can serve as a unifying framework that accommodates several tractable restrictions of ASP known from the literature. Furthermore, we show how backdoors allow us to deploy recent algorithmic results from parameterized complexity theory to the domain of answer set programming. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} } @article{GruenewaldMeinel2015, author = {Gr{\"u}newald, Franka and Meinel, Christoph}, title = {Implementation and Evaluation of Digital E-Lecture Annotation in Learning Groups to Foster Active Learning}, series = {IEEE transactions on learning technologies}, volume = {8}, journal = {IEEE transactions on learning technologies}, number = {3}, publisher = {Inst. of Electr. and Electronics Engineers}, address = {Los Alamitos}, issn = {1939-1382}, doi = {10.1109/TLT.2015.2396042}, pages = {286 -- 298}, year = {2015}, abstract = {The use of video lectures in distance learning involves the two major problems of searchability and active user participation. In this paper, we promote the implementation and usage of a collaborative educational video annotation functionality to overcome these two challenges. Different use cases and requirements, as well as details of the implementation, are explained. Furthermore, we suggest more improvements to foster a culture of participation and an algorithm for the extraction of semantic data. Finally, evaluations in the form of user tests and questionnaires in a MOOC setting are presented. The results of the evaluation are promising, as they indicate not only that students perceive it as useful, but also that the learning effectiveness increases. The combination of personal lecture video annotations with a semantic topic map was also evaluated positively and will thus be investigated further, as will the implementation in a MOOC context.}, language = {en} } @article{HoosKaminskiLindaueretal.2015, author = {Hoos, Holger and Kaminski, Roland and Lindauer, Marius and Schaub, Torsten H.}, title = {aspeed: Solver scheduling via answer set programming}, series = {Theory and practice of logic programming}, volume = {15}, journal = {Theory and practice of logic programming}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {1471-0684}, doi = {10.1017/S1471068414000015}, pages = {117 -- 142}, year = {2015}, abstract = {Although Boolean Constraint Technology has made tremendous progress over the last decade, the efficacy of state-of-the-art solvers is known to vary considerably across different types of problem instances, and is known to depend strongly on algorithm parameters. This problem was addressed by means of a simple, yet effective approach using handmade, uniform, and unordered schedules of multiple solvers in ppfolio, which showed very impressive performance in the 2011 Satisfiability Testing (SAT) Competition. Inspired by this, we take advantage of the modeling and solving capacities of Answer Set Programming (ASP) to automatically determine more refined, that is, nonuniform and ordered solver schedules from the existing benchmarking data. We begin by formulating the determination of such schedules as multi-criteria optimization problems and provide corresponding ASP encodings. The resulting encodings are easily customizable for different settings, and the computation of optimum schedules can mostly be done in the blink of an eye, even when dealing with large runtime data sets stemming from many solvers on hundreds to thousands of instances. Also, the fact that our approach can be customized easily enabled us to swiftly adapt it to generate parallel schedules for multi-processor machines.}, language = {en} } @phdthesis{Jung2015, author = {Jung, J{\"o}rg}, title = {Efficient credit based server load balancing}, school = {Universit{\"a}t Potsdam}, pages = {353}, year = {2015}, language = {en} } @article{JungKiertscherMenskietal.2015, author = {Jung, J{\"o}rg and Kiertscher, Simon and Menski, Sebastian and Schnor, Bettina}, title = {Self-Adapting Load Balancing for DNS}, series = {Journal of networks}, volume = {10}, journal = {Journal of networks}, number = {4}, publisher = {Kluwer Academic Publishers}, address = {Oulu}, doi = {10.1109/SPECTS.2014.6879994}, pages = {222 -- 231}, year = {2015}, abstract = {The Domain Name System belongs to the core services of the Internet infrastructure. Hence, DNS availability and performance is essential for the operation of the Internet and replication as well as load balancing are used for the root and top level name servers. This paper proposes an architecture for credit based server load balancing (SLB) for DNS. Compared to traditional load balancing algorithms like round robin or least connection, the benefit of credit based SLB is that the load balancer can adapt more easily to heterogeneous load requests and back end server capacities. The challenge of this approach is the definition of a suited credit metric. While this was done before for TCP based services like HTTP, the problem was not solved for UDP based services like DNS. In the following an approach is presented to define credits also for UDP based services. This UDP/DNS approach is implemented within the credit based SLB implementation salbnet. The presented measurements confirm the benefit of the self-adapting credit based SLB approach. In our experiments, the mean (first) response time dropped significantly compared to weighted round robin (WRR) (from over 4 ms to about 0.6 ms for dynamic pressure relieve (DPR)).}, language = {en} } @phdthesis{Kaufmann2015, author = {Kaufmann, Benjamin}, title = {High performance answer set solving}, pages = {182}, year = {2015}, language = {en} } @incollection{KiyGessnerLuckeetal.2015, author = {Kiy, Alexander and Geßner, Hendrik and Lucke, Ulrike and Gr{\"u}newald, Franka}, title = {A Hybrid and Modular Framework for Mobile Campus Applications}, series = {i-com}, volume = {2015}, booktitle = {i-com}, number = {14}, publisher = {de Gruyter}, address = {Berlin}, issn = {2196-6826}, doi = {10.1515/icom-2015-0016}, publisher = {Universit{\"a}t Potsdam}, pages = {63 -- 73}, year = {2015}, abstract = {Mobile devices and associated applications (apps) are an indispensable part of daily life and provide access to important information anytime and anywhere. However, the availability of university-wide services in the mobile sector is still poor. If they exist they usually result from individual activities of students and teachers. Mobile applications can have an essential impact on the improvement of students' self-organization as well as on the design and enhancement of specific learning scenarios, though. This article introduces a mobile campus app framework, which integrates central campus services and decentralized learning applications. An analysis of strengths and weaknesses of different approaches is presented to summarize and evaluate them in terms of requirements, development, maintenance and operation. The article discusses the underlying service-oriented architecture that allows transferring the campus app to other universities or institutions at reasonable cost. It concludes with a presentation of the results as well as ongoing discussions and future work}, language = {en} }