@phdthesis{Rackwitz2016, author = {Rackwitz, Jenny}, title = {A novel approach to study low-energy electron-induced damage to DNA oligonucleotides}, school = {Universit{\"a}t Potsdam}, pages = {137}, year = {2016}, language = {en} } @article{RackwitzKopyraDabkowskaetal.2016, author = {Rackwitz, Jenny and Kopyra, Janina and Dabkowska, Iwona and Ebel, Kenny and Rankovic, MiloS Lj. and Milosavljevic, Aleksandar R. and Bald, Ilko}, title = {Sensitizing DNA Towards Low-Energy Electrons with 2-Fluoroadenine}, series = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, volume = {55}, journal = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1433-7851}, doi = {10.1002/anie.201603464}, pages = {10248 -- 10252}, year = {2016}, abstract = {2-Fluoroadenine ((2F)A) is a therapeutic agent, which is suggested for application in cancer radiotherapy. The molecular mechanism of DNA radiation damage can be ascribed to a significant extent to the action of low-energy (<20 eV) electrons (LEEs), which damage DNA by dissociative electron attachment. LEE induced reactions in (2F)A are characterized both isolated in the gas phase and in the condensed phase when it is incorporated into DNA. Information about negative ion resonances and anion-mediated fragmentation reactions is combined with an absolute quantification of DNA strand breaks in (2F)A-containing oligonucleotides upon irradiation with LEEs. The incorporation of (2F)A into DNA results in an enhanced strand breakage. The strand-break cross sections are clearly energy dependent, whereas the strand-break enhancements by (2F)A at 5.5, 10, and 15 eV are very similar. Thus, (2F)A can be considered an effective radiosensitizer operative at a wide range of electron energies.}, language = {en} } @misc{RasovicBlagojevicBaranacStojanovicetal.2016, author = {Rasovic, Aleksandar and Blagojevic, Vladimir and Baranac-Stojanovic, Marija and Kleinpeter, Erich and Markovic, Rade and Minic, Dragica M.}, title = {Quantification of the push-pull effect in 2-alkylidene-4-oxothiazolidines by using NMR spectral data and barriers to rotation around the C=C bond}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-394523}, pages = {6364 -- 6373}, year = {2016}, abstract = {Information about the strength of donor-acceptor interactions in push-pull alkenes is valuable, as this so-called "push-pull effect" influences their chemical reactivity and dynamic behaviour. In this paper, we discuss the applicability of NMR spectral data and barriers to rotation around the C[double bond, length as m-dash]C double bond to quantify the push-pull effect in biologically important 2-alkylidene-4-oxothiazolidines. While olefinic proton chemical shifts and differences in 13C NMR chemical shifts of the two carbons constituting the C[double bond, length as m-dash]C double bond fail to give the correct trend in the electron withdrawing ability of the substituents attached to the exocyclic carbon of the double bond, barriers to rotation prove to be a reliable quantity in providing information about the extent of donor-acceptor interactions in the push-pull systems studied. In particular all relevant kinetic data, that is the Arrhenius parameters (apparent activation energy Ea and frequency factor A) and activation parameters (ΔS‡, ΔH‡ and ΔG‡), were determined from the data of the experimentally studied configurational isomerization of (E)-9a. These results were compared to previously published related data for other two compounds, (Z)-1b and (2E,5Z)-7, showing that experimentally determined ΔG‡ values are a good indicator of the strength of push-pull character. Theoretical calculations of the rotational barriers of eight selected derivatives excellently correlate with the calculated C[double bond, length as m-dash]C bond lengths and corroborate the applicability of ΔG‡ for estimation of the strength of the push-pull effect in these and related systems.}, language = {en} } @article{RasovicBlagojevicBaranacStojanovicetal.2016, author = {Rasovic, Aleksandar and Blagojevic, Vladimir and Baranac-Stojanovic, Marija and Kleinpeter, Erich and Markovic, Rade and Minic, Dragica M.}, title = {Quantification of the push-pull effect in 2-alkylidene-4-oxothiazolidines by using NMR spectral data and barriers to rotation around the C=C bond}, series = {New journal of chemistry}, volume = {40}, journal = {New journal of chemistry}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1144-0546}, doi = {10.1039/c6nj00901h}, pages = {6364 -- 6373}, year = {2016}, abstract = {Information about the strength of donor-acceptor interactions in push-pull alkenes is valuable, as this so-called "push-pull effect' influences their chemical reactivity and dynamic behaviour. In this paper, we discuss the applicability of NMR spectral data and barriers to rotation around the CQC double bond to quantify the push-pull effect in biologically important 2-alkylidene-4-oxothiazolidines. While olefinic proton chemical shifts and differences in C-13 NMR chemical shifts of the two carbons constituting the CQC double bond fail to give the correct trend in the electron withdrawing ability of the substituents attached to the exocyclic carbon of the double bond, barriers to rotation prove to be a reliable quantity in providing information about the extent of donor-acceptor interactions in the push-pull systems studied. In particular all relevant kinetic data, that is the Arrhenius parameters ( apparent activation energy Ea and frequency factor A) and activation parameters ( Delta S-double dagger, Delta H-double dagger and Delta G(double dagger)), were determined from the data of the experimentally studied configurational isomerization of ( E)-9a. These results were compared to previously published related data for other two compounds, ( Z)-1b and ( 2E, 5Z)-7, showing that experimentally determined Delta G(double dagger) values are a good indicator of the strength of push-pull character. Theoretical calculations of the rotational barriers of eight selected derivatives excellently correlate with the calculated CQC bond lengths and corroborate the applicability of Delta G(double dagger) for estimation of the strength of the push-pull effect in these and related systems.}, language = {en} } @article{RendonEnriquezTauschScherf2016, author = {Rendon-Enriquez, I. N. and Tausch, M. W. and Scherf, Ullrich}, title = {Curricular Innovation Electrochromic Window with conductive Polymers}, series = {Chemie in unserer Zeit}, volume = {50}, journal = {Chemie in unserer Zeit}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0009-2851}, doi = {10.1002/ciuz.201600734}, pages = {400 -- 405}, year = {2016}, abstract = {The construction of a low-cost potentiostat and an electrochemical cell are described. Both have been used for the potentiostatic deposition of conducting polymers on FTO-coated glass. According to a reported procedure from literature an electrochromic window has been prepared and tested. Furthermore a novel window containing an additional electrodeposited polymer layer that shows a more pronounced electrochromism than the literature example is described for the first time. The required chemicals are inexpensive as well as the entire electrochemical equipment.}, language = {de} } @article{ReppertSarhanSteteetal.2016, author = {Reppert, Alexander von and Sarhan, Radwan Mohamed and Stete, Felix and Pudell, Jan-Etienne and Del Fatti, N. and Crut, A. and Koetz, Joachim and Liebig, Ferenc and Prietzel, Claudia Christina and Bargheer, Matias}, title = {Watching the Vibration and Cooling of Ultrathin Gold Nanotriangles by Ultrafast X-ray Diffraction}, series = {The journal of physical chemistry : C, Nanomaterials and interfaces}, volume = {120}, journal = {The journal of physical chemistry : C, Nanomaterials and interfaces}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/acs.jpcc.6b11651}, pages = {28894 -- 28899}, year = {2016}, abstract = {We study the vibrations of ultrathin gold nanotriangles upon optical excitation of the electron gas by ultrafast X-ray diffraction. We quantitatively measure the strain evolution in these highly asymmetric nano-objects, providing a direct estimation of the amplitude and phase of the excited vibrational motion. The maximal strain value is well reproduced by calculations addressing pump absorption by the nanotriangles and their resulting thermal expansion. The amplitude and phase of the out-of-plane vibration mode with 3.6 ps period dominating the observed oscillations are related to two distinct excitation mechanisms. Electronic and phonon pressures impose stresses with different time dependences. The nanosecond relaxation of the expansion yields a direct temperature sensing of the nano-object. The presence of a thin organic molecular layer at the nanotriangle/substrate interfaces drastically reduces the thermal conductance to the substrate.}, language = {en} } @article{RichterSchulzSubkowskietal.2016, author = {Richter, Marina Juliane and Schulz, Alexander and Subkowski, Thomas and B{\"o}ker, Alexander}, title = {Adsorption and rheological behavior of an amphiphilic protein at oil/water interfaces}, series = {Journal of colloid and interface science}, volume = {479}, journal = {Journal of colloid and interface science}, publisher = {Elsevier}, address = {San Diego}, issn = {0021-9797}, doi = {10.1016/j.jcis.2016.06.062}, pages = {199 -- 206}, year = {2016}, abstract = {Hydrophobins are highly surface active proteins which self-assemble at hydrophilic-hydrophobic interfaces into amphipathic membranes. We investigate hydrophobin self-assembly at oil/water interfaces to deepen the understanding of protein behavior in order to improve our biomimetic synthesis. Therefore, we carried out pendant drop measurements of hydrophobin stabilized oil/water systems determining the time-dependent IFT and the dilatational rheology with additional adaptation to the Serrien protein model. We show that the class I hydrophobin H*Protein B adsorbs at an oil/water interface where it forms a densely-packed interfacial protein layer, which dissipates energy during droplet oscillation. Furthermore, the interfacial protein layer exhibits shear thinning behavior. (C) 2016 Elsevier Inc. All rights reserved.}, language = {en} } @phdthesis{Riebe2016, author = {Riebe, Daniel}, title = {Experimental and theoretical investigations of molecular ions by spectroscopy as well as ion mobility and mass spectrometry}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-94632}, school = {Universit{\"a}t Potsdam}, pages = {143}, year = {2016}, abstract = {The aim of this thesis was the elucidation of different ionization methods (resonance-enhanced multiphoton ionization - REMPI, electrospray ionization - ESI, atmospheric pressure chemical ionization - APCI) in ion mobility (IM) spectrometry. In order to gain a better understanding of the ionization processes, several spectroscopic, mass spectrometric and theoretical methods were also used. Another focus was the development of experimental techniques, including a high resolution spectrograph and various combinations of IM and mass spectrometry. The novel high resolution 2D spectrograph facilitates spectroscopic resolutions in the range of commercial echelle spectrographs. The lowest full width at half maximum of a peak achieved was 25 pm. The 2D spectrograph is based on the wavelength separation of light by the combination of a prism and a grating in one dimension, and an etalon in the second dimension. This instrument was successfully employed for the acquisition of Raman and laser-induced breakdown spectra. Different spectroscopic methods (light scattering and fluorescence spectroscopy) permitting a spatial as well as spectral resolution, were used to investigate the release of ions in the electrospray. The investigation is based on the 50 nm shift of the fluorescence band of rhodamine 6G ions of during the transfer from the electrospray droplets to the gas phase. A newly developed ionization chamber operating at reduced pressure (0.5 mbar) was coupled to a time-of-flight mass spectrometer. After REMPI of H2S, an ionization chemistry analogous to H2O was observed with this instrument. Besides H2S+ and its fragments, H3S+ and protonated analyte ions could be observed as a result of proton-transfer reactions. For the elucidation of the peaks in IM spectra, a combination of IM spectrometer and linear quadrupole ion trap mass spectrometer was developed. The instrument can be equipped with various ionization sources (ESI, REMPI, APCI) and was used for the characterization of the peptide bradykinin and the neuroleptic promazine. The ionization of explosive compounds in an APCI source based on soft x-radiation was investigated in a newly developed ionization chamber attached to the ion trap mass spectrometer. The major primary and secondary reactions could be characterized and explosive compound ions could be identified and assigned to the peaks in IM spectra. The assignment is based on the comparison of experimentally determined and calculated IM. The methods of calculation currently available exhibit large deviations, especially in the case of anions. Therefore, on the basis of an assessment of available methods, a novel hybrid method was developed and characterized.}, language = {en} } @article{RiebeEderRitscheletal.2016, author = {Riebe, Daniel and Eder, Alexander and Ritschel, Thomas and Beitz, Toralf and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Beil, Andreas and Blaschke, Michael and Ludwig, Thomas}, title = {Atmospheric pressure chemical ionization of explosives induced by soft X-radiation in ion mobility spectrometry: mass spectrometric investigation of the ionization reactions of drift gasses, dopants and alkyl nitrates}, series = {Journal of mass spectrometr}, volume = {51}, journal = {Journal of mass spectrometr}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1076-5174}, doi = {10.1002/jms.3784}, pages = {566 -- 577}, year = {2016}, abstract = {A promising replacement for the radioactive sources commonly encountered in ion mobility spectrometers is a miniaturized, energy-efficient photoionization source that produce the reactant ions via soft X-radiation (2.8 keV). In order to successfully apply the photoionization source, it is imperative to know the spectrum of reactant ions and the subsequent ionization reactions leading to the detection of analytes. To that end, an ionization chamber based on the photoionization source that reproduces the ionization processes in the ion mobility spectrometer and facilitates efficient transfer of the product ions into a mass spectrometer was developed. Photoionization of pure gasses and gas mixtures containing air, N-2, CO2 and N2O and the dopant CH2Cl2 is discussed. The main product ions of photoionization are identified and compared with the spectrum of reactant ions formed by radioactive and corona discharge sources on the basis of literature data. The results suggest that photoionization by soft X-radiation in the negative mode is more selective than the other sources. In air, adduct ions of O-2 - with H2O and CO2 were exclusively detected. Traces of CO2 impact the formation of adduct ions of O-2 - and Cl -(upon addition of dopant) and are capable of suppressing them almost completely at high CO2 concentrations. Additionally, the ionization products of four alkyl nitrates (ethylene glycol dinitrate, nitroglycerin, erythritol tetranitrate and pentaerythritol tetranitrate) formed by atmospheric pressure chemical ionization induced by X-ray photoionization in different gasses (air, N-2 and N2O) and dopants (CH2Cl2, C2H5Br and CH3I) are investigated. The experimental studies are complemented by density functional theory calculations of the most important adduct ions of the alkyl nitrates (M) used for their spectrometric identification. In addition to the adduct ions [M + NO3](-) and [M + Cl](-), adduct ions such as [M + N2O2](-), [M + Br](-) and [M+ I](-) were detected, and their gas-phase structures and energetics are investigated by density functional theory calculations. Copyright (C) 2016 John Wiley \& Sons, Ltd.}, language = {en} } @article{RossbergRottkeSchulzetal.2016, author = {Rossberg, Joana and Rottke, Falko O. and Schulz, Burkhard and Lendlein, Andreas}, title = {Enzymatic Degradation of Oligo(epsilon-caprolactone)s End-Capped with Phenylboronic Acid Derivatives at the Air-Water Interface}, series = {Macromolecular rapid communications}, volume = {37}, journal = {Macromolecular rapid communications}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1022-1336}, doi = {10.1002/marc.201600471}, pages = {1966 -- 1971}, year = {2016}, abstract = {The influence of terminal functionalization of oligo(epsilon-caprolactone)s (OCL) with phenylboronic acid pinacol ester or phenylboronic acid on the enzymatic degradation behavior at the air-water interface is investigated by the Langmuir monolayer degradation technique. While the unsubstituted OCL immediately degrades after injection of the enzyme lipase from Pseudomonas cepacia, enzyme molecules are incorporated into the films based on end-capped OCL before degradation. This incorporation of enzymes does not inhibit or suppress the film degradation, but retards it significantly. A specific binding of lipase to the polymer monolayer allows studying the enzymatic activity of bound proteins and the influence on the degradation process. The functionalization of a macromolecule with phenyl boronic acid groups is an approach to investigate their interactions with diol-containing biomolecules like sugars and to monitor their specified impact on the enzymatic degradation behavior at the air-water interface.}, language = {en} }