@misc{AngermannJackischAllroggenetal.2017, author = {Angermann, Lisa and Jackisch, Conrad and Allroggen, Niklas and Sprenger, Matthias and Zehe, Erwin and Tronicke, Jens and Weiler, Markus and Blume, Theresa}, title = {Form and function in hillslope hydrology}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {658}, issn = {1866-8372}, doi = {10.25932/publishup-41916}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-419161}, pages = {22}, year = {2017}, abstract = {The phrase form and function was established in architecture and biology and refers to the idea that form and functionality are closely correlated, influence each other, and co-evolve. We suggest transferring this idea to hydrological systems to separate and analyze their two main characteristics: their form, which is equivalent to the spatial structure and static properties, and their function, equivalent to internal responses and hydrological behavior. While this approach is not particularly new to hydrological field research, we want to employ this concept to explicitly pursue the question of what information is most advantageous to understand a hydrological system. We applied this concept to subsurface flow within a hillslope, with a methodological focus on function: we conducted observations during a natural storm event and followed this with a hillslope-scale irrigation experiment. The results are used to infer hydrological processes of the monitored system. Based on these findings, the explanatory power and conclusiveness of the data are discussed. The measurements included basic hydrological monitoring methods, like piezometers, soil moisture, and discharge measurements. These were accompanied by isotope sampling and a novel application of 2-D time-lapse GPR (ground-penetrating radar). The main finding regarding the processes in the hillslope was that preferential flow paths were established quickly, despite unsaturated conditions. These flow paths also caused a detectable signal in the catchment response following a natural rainfall event, showing that these processes are relevant also at the catchment scale. Thus, we conclude that response observations (dynamics and patterns, i.e., indicators of function) were well suited to describing processes at the observational scale. Especially the use of 2-D time-lapse GPR measurements, providing detailed subsurface response patterns, as well as the combination of stream-centered and hillslope-centered approaches, allowed us to link processes and put them in a larger context. Transfer to other scales beyond observational scale and generalizations, however, rely on the knowledge of structures (form) and remain speculative. The complementary approach with a methodological focus on form (i.e., structure exploration) is presented and discussed in the companion paper by Jackisch et al. (2017).}, language = {en} } @misc{WienhoeferGermerLindenmaieretal.2009, author = {Wienh{\"o}fer, Jan and Germer, Kai and Lindenmaier, Falk and F{\"a}rber, Arne and Zehe, Erwin}, title = {Applied tracers for the observation of subsurface stormflow at the hillslope scale}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-45246}, year = {2009}, abstract = {Rain fall-runoff response in temperate humid headwater catchments is mainly controlled by hydrolo gical processes at the hillslope scale. Applied tracer experiments with fluore scent dye and salt tracers are well known tools in groundwater studies at the large scale and vadose zone studies at the plot scale, where they provide a means to characterise subsurface flow. We extend this approach to the hillslope scale to investigate saturated and unsaturated flow path s concertedly at a forested hill slope in the Austrian Alps. Dye staining experiments at the plot scale revealed that crack s and soil pipe s function as preferential flow path s in the fine-textured soils of the study area, and these preferenti al flow structures were active in fast subsurface transport of tracers at the hillslope scale. Breakthrough curves obtained under steady flow conditions could be fitted well to a one-dimensional convection-dispersion model. Under natural rain fall a positive correlation of tracer concentrations to the transient flows was observed. The results of this study demon strate qualitative and quantitative effects of preferential flow feature s on subsurface stormflow in a temperate humid headwater catchment. It turn s out that , at the hill slope scale, the interaction s of structures and processes are intrinsically complex, which implies that attempts to model such a hillslope satisfactorily require detailed investigation s of effective structures and parameters at the scale of interest.}, language = {en} } @phdthesis{Zimmermann2007, author = {Zimmermann, Beate}, title = {Spatial and temporal variability of the soil saturated hydraulic conductivity in gradients of disturbance}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-16402}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {As land-cover conversion continues to expand into ever more remote areas in the humid tropics, montane rainforests are increasingly threatened. In the south Ecuadorian Andes, they are not only subject to man-made disturbances but also to naturally occurring landslides. I was interested in the impact of this ecosystem dynamics on a key parameter of the hydrologic cycle, the soil saturated hydraulic conductivity (synonym: permeability; Ks from here on), because it is a sensitive indicator for soil disturbances. My general objective was to quantify the effects of the regional natural and human disturbances on the saturated hydraulic conductivity and to describe the resulting spatial-temporal patterns. The main hypotheses were: 1) disturbances cause an apparent displacement of the less permeable soil layer towards the surface, either due to a loss of the permeable surface soil after land-sliding, or as a consequence of the surface soil compaction under cattle pastures; 2) 'recovery' from disturbance, either because of landslide re-vegetation or because of secondary succession after pasture abandonment, involves an apparent displacement of the less permeable layer back towards the original depth an 3) disturbances cause a simplification of the Ks spatial structure, i.e. the spatially dependent random variation diminishes; the subsequent recovery entails the re-establishment of the original structure. In my first study, I developed a synthesis of recent geostatistical research regarding its applicability to soil hydraulic data, including exploratory data analysis and variogram estimation techniques; I subsequently evaluated the results in terms of spatial prediction uncertainty. Concerning the exploratory data analysis, my main results were: 1) Gaussian uni- and bivariate distributions of the log-transformed data; 2) the existence of significant local trends; 3) no need for robust estimation; 4) no anisotropic variation. I found partly considerable differences in covariance parameters resulting from different variogram estimation techniques, which, in the framework of spatial prediction, were mainly reflected in the spatial connectivity of the Ks-field. Ignoring the trend component and an arbitrary use of robust estimators, however, would have the most severe consequences in this respect. Regarding variogram modeling, I encouraged restricted maximum likelihood estimation because of its accuracy and independence on the selected lags needed for experimental variograms. The second study dealt with the Ks spatial-temporal pattern in the sequences of natural and man-made disturbances characteristic for the montane rainforest study area. To investigate the disturbance effects both on global means and the spatial structure of Ks, a combined design-and model-based sampling approach was used for field-measurements at soil depths of 12.5, 20, and 50 cm (n=30-150/depth) under landslides of different ages (2 and 8 years), under actively grazed pasture, fallows following pasture abandonment (2 to 25 years of age), and under natural forest. Concerning global means, our main findings were 1) global means of the soil permeability generally decrease with increasing soil depth; 2) no significant Ks differences can be observed among landslides and compared to the natural forest; 3) a distinct permeability decrease of two orders of magnitude occurs after forest conversion to pasture at shallow soil depths, and 4) the slow regeneration process after pasture abandonment requires at least one decade. Regarding the Ks spatial structure, we found that 1) disturbances affect the Ks spatial structure in the topsoil, and 2) the largest differences in spatial patterns are associated with the subsoil permeability. In summary, the regional landslide activity seems to affect soil hydrology to a marginal extend only, which is in contrast to the pronounced drop of Ks after forest conversion. We used this spatial-temporal information combined with local rain intensities to assess the partitioning of rainfall into vertical and lateral flowpaths under undisturbed, disturbed, and regenerating land-cover types in the third study. It turned out that 1) the montane rainforest is characterized by prevailing vertical flowpaths in the topsoil, which can switch to lateral directions below 20 cm depth for a small number of rain events, which may, however, transport a high portion of the annual runoff; 2) similar hydrological flowpaths occur under the landslides except for a somewhat higher probability of impermeable layer formation in the topsoil of a young landslide, and 3) pronounced differences in runoff components can be observed for the human disturbance sequence involving the development of near-surface impeding layers for 24, 44, and 8 \% of rain events for pasture, a two-year-old fallow, and a ten-year-old fallow, respectively.}, language = {en} }