@misc{AgarwalMarwanMaheswaranetal.2017, author = {Agarwal, Ankit and Marwan, Norbert and Maheswaran, Rathinasamy and Merz, Bruno and Kurths, J{\"u}rgen}, title = {Multi-scale event synchronization analysis for unravelling climate processes}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {661}, issn = {1866-8372}, doi = {10.25932/publishup-41827}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-418274}, pages = {13}, year = {2017}, abstract = {The temporal dynamics of climate processes are spread across different timescales and, as such, the study of these processes at only one selected timescale might not reveal the complete mechanisms and interactions within and between the (sub-) processes. To capture the non-linear interactions between climatic events, the method of event synchronization has found increasing attention recently. The main drawback with the present estimation of event synchronization is its restriction to analysing the time series at one reference timescale only. The study of event synchronization at multiple scales would be of great interest to comprehend the dynamics of the investigated climate processes. In this paper, the wavelet-based multi-scale event synchronization (MSES) method is proposed by combining the wavelet transform and event synchronization. Wavelets are used extensively to comprehend multi-scale processes and the dynamics of processes across various timescales. The proposed method allows the study of spatio-temporal patterns across different timescales. The method is tested on synthetic and real-world time series in order to check its replicability and applicability. The results indicate that MSES is able to capture relationships that exist between processes at different timescales.}, language = {en} } @misc{DiGiacomoDiGiacomoKligeretal.2015, author = {Di Giacomo, Adrian S. and Di Giacomo, Alejandro G. and Kliger, Rafi and Reboreda, Juan C. and Tiedemann, Ralph and Mahler, Bettina}, title = {No evidence of genetic variation in microsatellite and mitochondrial DNA markers among remaining populations of the Strange-tailed Tyrant Alectrurus risora, an endangered grassland species}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {583}, doi = {10.25932/publishup-41442}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-414427}, pages = {127 -- 138}, year = {2015}, abstract = {The Strange-tailed Tyrant Alectrurus risora (Aves: Tyrannidae) is an endemic species of southern South American grasslands that suffered a 90\% reduction of its original distribution due to habitat transformation. This has led the species to be classified as globally Vulnerable. By the beginning of the last century, populations were partially migratory and moved south during the breeding season. Currently, the main breeding population inhabits the Ibera wetlands in the province of Corrientes, north-east Argentina, where it is resident all year round. There are two remaining small populations in the province of Formosa, north-east Argentina, and in southern Paraguay, which are separated from the main population by the Parana-Paraguay River and its continuous riverine forest habitat. The populations of Corrientes and Formosa are separated by 300 km and the grasslands between populations are non-continuous due to habitat transformation. We used mtDNA sequences and eight microsatellite loci to test if there were evidences of genetic isolation between Argentinean populations. We found no evidence of genetic structure between populations (Phi(ST) = 0.004, P = 0.32; Fst = 0.01, P = 0.06), which can be explained by either retained ancestral polymorphism or by dispersal between populations. We found no evidence for a recent demographic bottleneck in nuclear loci. Our results indicate that these populations could be managed as a single conservation unit on a regional scale. Conservation actions should be focused on preserving the remaining network of areas with natural grasslands to guarantee reproduction, dispersal and prevent further decline of populations.}, language = {en} } @phdthesis{Durek2008, author = {Durek, Pawel}, title = {Comparative analysis of molecular interaction networks : the interplay between spatial and functional organizing principles}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-31439}, school = {Universit{\"a}t Potsdam}, year = {2008}, abstract = {The study of biological interaction networks is a central theme in systems biology. Here, we investigate common as well as differentiating principles of molecular interaction networks associated with different levels of molecular organization. They include metabolic pathway maps, protein-protein interaction networks as well as kinase interaction networks. First, we present an integrated analysis of metabolic pathway maps and protein-protein interaction networks (PIN). It has long been established that successive enzymatic steps are often catalyzed by physically interacting proteins forming permanent or transient multi-enzyme complexes. Inspecting high-throughput PIN data, it has been shown recently that, indeed, enzymes involved in successive reactions are generally more likely to interact than other protein pairs. In this study, we expanded this line of research to include comparisons of the respective underlying network topologies as well as to investigate whether the spatial organization of enzyme interactions correlates with metabolic efficiency. Analyzing yeast data, we detected long-range correlations between shortest paths between proteins in both network types suggesting a mutual correspondence of both network architectures. We discovered that the organizing principles of physical interactions between metabolic enzymes differ from the general PIN of all proteins. While physical interactions between proteins are generally dissortative, enzyme interactions were observed to be assortative. Thus, enzymes frequently interact with other enzymes of similar rather than different degree. Enzymes carrying high flux loads are more likely to physically interact than enzymes with lower metabolic throughput. In particular, enzymes associated with catabolic pathways as well as enzymes involved in the biosynthesis of complex molecules were found to exhibit high degrees of physical clustering. Single proteins were identified that connect major components of the cellular metabolism and hence might be essential for the structural integrity of several biosynthetic systems. Besides metabolic aspects of PINs, we investigated the characteristic topological properties of protein interactions involved in signaling and regulatory functions mediated by kinase interactions. Characteristic topological differences between PINs associated with metabolism, and those describing phosphorylation networks were revealed and shown to reflect the different modes of biological operation of both network types. The construction of phosphorylation networks is based on the identification of specific kinase-target relations including the determination of the actual phosphorylation sites (P-sites). The computational prediction of P-sites as well as the identification of involved kinases still suffers from insufficient accuracies and specificities of the underlying prediction algorithms, and the experimental identification in a genome-scale manner is not (yet) doable. Computational prediction methods have focused primarily on extracting predictive features from the local, one-dimensional sequence information surrounding P-sites. However the recognition of such motifs by the respective kinases is a spatial event. Therefore, we characterized the spatial distributions of amino acid residue types around P-sites and extracted signature 3D-profiles. We then tested the added value of spatial information on the prediction performance. When compared to sequence-only based predictors, a consistent performance gain was obtained. The availability of reliable training data of experimentally determined P-sites is critical for the development of computational prediction methods. As part of this thesis, we provide an assessment of false-positive rates of phosphoproteomic data.}, language = {en} } @article{EllisAbreuEllis2015, author = {Ellis, Jason Brent and Abreu-Ellis, Carla Reis}, title = {Student Perspectives of Social Networking use in Higher Education}, series = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, journal = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, number = {7}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1868-0844}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-82632}, pages = {117 -- 131}, year = {2015}, abstract = {Social networks are currently at the forefront of tools that lend to Personal Learning Environments (PLEs). This study aimed to observe how students perceived PLEs, what they believed were the integral components of social presence when using Facebook as part of a PLE, and to describe student's preferences for types of interactions when using Facebook as part of their PLE. This study used mixed methods to analyze the perceptions of graduate and undergraduate students on the use of social networks, more specifically Facebook as a learning tool. Fifty surveys were returned representing a 65 \% response rate. Survey questions included both closed and open-ended questions. Findings suggested that even though students rated themselves relatively well in having requisite technology skills, and 94 \% of students used Facebook primarily for social use, they were hesitant to migrate these skills to academic use because of concerns of privacy, believing that other platforms could fulfil the same purpose, and by not seeing the validity to use Facebook in establishing social presence. What lies at odds with these beliefs is that when asked to identify strategies in Facebook that enabled social presence to occur in academic work, the majority of students identified strategies in five categories that lead to social presence establishment on Facebook during their coursework.}, language = {en} } @misc{EvansHyde2022, author = {Evans, Myfanwy E. and Hyde, Stephen T.}, title = {Symmetric Tangling of Honeycomb Networks}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1282}, issn = {1866-8372}, doi = {10.25932/publishup-57084}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-570842}, pages = {13}, year = {2022}, abstract = {Symmetric, elegantly entangled structures are a curious mathematical construction that has found their way into the heart of the chemistry lab and the toolbox of constructive geometry. Of particular interest are those structures—knots, links and weavings—which are composed locally of simple twisted strands and are globally symmetric. This paper considers the symmetric tangling of multiple 2-periodic honeycomb networks. We do this using a constructive methodology borrowing elements of graph theory, low-dimensional topology and geometry. The result is a wide-ranging enumeration of symmetric tangled honeycomb networks, providing a foundation for their exploration in both the chemistry lab and the geometers toolbox.}, language = {en} } @phdthesis{Gengel2021, author = {Gengel, Erik}, title = {Direct and inverse problems of network analysis}, doi = {10.25932/publishup-51236}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-512367}, school = {Universit{\"a}t Potsdam}, pages = {VIII, 102}, year = {2021}, abstract = {Selfsustained oscillations are some of the most commonly observed phenomena in biological systems. They emanate from non-linear systems in a heterogeneous environment and can be described by the theory of dynamical systems. Part of this theory considers reduced models of the oscillator dynamics by means of amplitudes and a phase variable. Such variables are highly attractive for theoretical and experimental studies. Theoretically these variables correspond to an integrable linearization of the generally non-linear system. Experimentally, there exist well established approaches to extract phases from oscillator signals. Notably, one can define phase models also for networks of oscillators. One highly active field examines effects of non-local coupling among oscillators, which is thought to play a key role in networks with strong coupling. The dissertation introduces and expands the knowledge about high-order phase coupling in networks of oscillators. Mathematical calculations consider the Stuart-Landau oscillator. A novel phase estimation scheme for direct observations of an oscillator dynamics is introduced based on numerics. A numerical study of high-order phase coupling applies a Fourier fit for the Stuart-Landau and for the van-der-Pol oscillator. The numerical approach is finally tested on observation-based phase estimates of the Morris-Lecar neuron. A popular approach for the construction of phases from signals is based on phase demodulation by means of the Hilbert transform. Generally, observations of oscillations contain a small and generic variation of their amplitude. The work presents a way to quantify how much the variations of signal amplitude spoil a phase demodulation procedure. For the ideal case of phase modulated signals, amplitude modulations vanish. However, the Hilbert transform produces artificial variations of the reconstructed amplitude even in this case. The work proposes a novel procedure called Iterative Hilbert Transform Embedding to obtain an optimal demodulation of signals. The text presents numerous examples and tests of application for the method, covering multicomponent signals, observables of highly stable limit cycle oscillations and noisy phase dynamics. The numerical results are supported by a spectral theory of convergence for weak phase modulations.}, language = {en} } @phdthesis{Giorgi2011, author = {Giorgi, Federico Manuel}, title = {Expression-based reverse engineering of plant transcriptional networks}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-56760}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Regulation of gene transcription plays a major role in mediating cellular responses and physiological behavior in all known organisms. The finding that similar genes are often regulated in a similar manner (co-regulated or "co-expressed") has directed several "guilt-by-association" approaches in order to reverse-engineer the cellular transcriptional networks using gene expression data as a compass. This kind of studies has been considerably assisted in the recent years by the development of high-throughput transcript measurement platforms, specifically gene microarrays and next-generation sequencing. In this thesis, I describe several approaches for improving the extraction and interpretation of the information contained in microarray based gene expression data, through four steps: (1) microarray platform design, (2) microarray data normalization, (3) gene network reverse engineering based on expression data and (4) experimental validation of expression-based guilt-by-association inferences. In the first part test case is shown aimed at the generation of a microarray for Thellungiella salsuginea, a salt and drought resistant close relative to the model plant Arabidopsis thaliana; the transcripts of this organism are generated on the combination of publicly available ESTs and newly generated ad-hoc next-generation sequencing data. Since the design of a microarray platform requires the availability of highly reliable and non-redundant transcript models, these issues are addressed consecutively, proposing several different technical solutions. In the second part I describe how inter-array correlation artifacts are generated by the common microarray normalization methods RMA and GCRMA, together with the technical and mathematical characteristics underlying the problem. A solution is proposed in the form of a novel normalization method, called tRMA. The third part of the thesis deals with the field of expression-based gene network reverse engineering. It is shown how different centrality measures in reverse engineered gene networks can be used to distinguish specific classes of genes, in particular essential genes in Arabidopsis thaliana, and how the use of conditional correlation can add a layer of understanding over the information flow processes underlying transcript regulation. Furthermore, several network reverse engineering approaches are compared, with a particular focus on the LASSO, a linear regression derivative rarely applied before in global gene network reconstruction, despite its theoretical advantages in robustness and interpretability over more standard methods. The performance of LASSO is assessed through several in silico analyses dealing with the reliability of the inferred gene networks. In the final part, LASSO and other reverse engineering methods are used to experimentally identify novel genes involved in two independent scenarios: the seed coat mucilage pathway in Arabidopsis thaliana and the hypoxic tuber development in Solanum tuberosum. In both cases an interesting method complementarity is shown, which strongly suggests a general use of hybrid approaches for transcript expression-based inferences. In conclusion, this work has helped to improve our understanding of gene transcription regulation through a better interpretation of high-throughput expression data. Part of the network reverse engineering methods described in this thesis have been included in a tool (CorTo) for gene network reverse engineering and annotated visualization from custom transcription datasets.}, language = {en} } @phdthesis{Muehlenhoff2017, author = {M{\"u}hlenhoff, Judith}, title = {Culture-driven innovation}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-104626}, school = {Universit{\"a}t Potsdam}, pages = {143}, year = {2017}, abstract = {This cumulative dissertation deals with the potential of underexplored cultural sources for innovation. Nowadays, firms recognize an increasing demand for innovation to keep pace with an ever-growing dynamic worldwide competition. Knowledge is one of the most crucial sources and resource, while until now innovation has been foremost driven by technology. But since the last years, we have been witnessing a change from technology's role as a driver of innovation to an enabler of innovation. Innovative products and services increasingly differentiate through emotional qualities and user experience. These experiences are hard to grasp and require alignment in innovation management theory and practice. This work cares about culture in a broader matter as a source for innovation. It investigates the requirements and fundamentals for "culture-driven innovation" by studying where and how to unlock cultural sources. The research questions are the following: What are cultural sources for knowledge and innovation? Where can one find cultural sources and how to tap into them? The dissertation starts with an overview of its central terms and introduces cultural theories as an overarching frame to study cultural sources for innovation systematically. Here, knowledge is not understood as something an organization owns like a material resource, but it is seen as something created and taking place in practices. Such a practice theoretical lens inheres the rejection of the traditional economic depiction of the rational Homo Oeconomicus. Nevertheless, it also rejects the idea of the Homo Sociologicus about the strong impact of society and its values on individual actions. Practice theory approaches take account of both concepts by underscoring the dualism of individual (agency, micro-level) and structure (society, macro-level). Following this, organizations are no enclosed entities but embedded within their socio-cultural environment, which shapes them and is also shaped by them. Then, the first article of this dissertation acknowledges a methodological stance of this dualism by discussing how mixed methods support an integrated approach to study the micro- and macro-level. The article focuses on networks (thus communities) as a central research unit within studies of entrepreneurship and innovation. The second article contains a network analysis and depicts communities as central loci for cultural sources and knowledge. With data from the platform Meetup.com about events etc., the study explores which overarching communities and themes have been evolved in Berlin's start up and tech scene. While the latter study was about where to find new cultural sources, the last article addresses how to unlock such knowledge sources. It develops the concept of a cultural absorptive capacity, that is the capability of organizations to open up towards cultural sources. Furthermore, the article points to the role of knowledge intermediaries in the early phases of knowledge acquisition. Two case studies on companies working with artists illustrate the roles of such intermediaries and how they support firms to gain knowledge from cultural sources. Overall, this dissertation contributes to a better understanding of culture as a source for innovation from a theoretical, methodological, and practitioners' point of view. It provides basic research to unlock the potential of such new knowledge sources for companies - sources that so far have been neglected in innovation management.}, language = {en} } @phdthesis{Omelchenko2021, author = {Omelchenko, Oleh}, title = {Synchronit{\"a}t-und-Unordnung-Muster in Netzwerken gekoppelter Oszillatoren}, doi = {10.25932/publishup-53596}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-535961}, school = {Universit{\"a}t Potsdam}, pages = {152}, year = {2021}, abstract = {Synchronization of coupled oscillators manifests itself in many natural and man-made systems, including cyrcadian clocks, central pattern generators, laser arrays, power grids, chemical and electrochemical oscillators, only to name a few. The mathematical description of this phenomenon is often based on the paradigmatic Kuramoto model, which represents each oscillator by one scalar variable, its phase. When coupled, phase oscillators constitute a high-dimensional dynamical system, which exhibits complex behaviour, ranging from synchronized uniform oscillation to quasiperiodicity and chaos. The corresponding collective rhythms can be useful or harmful to the normal operation of various systems, therefore they have been the subject of much research. Initially, synchronization phenomena have been studied in systems with all-to-all (global) and nearest-neighbour (local) coupling, or on random networks. However, in recent decades there has been a lot of interest in more complicated coupling structures, which take into account the spatially distributed nature of real-world oscillator systems and the distance-dependent nature of the interaction between their components. Examples of such systems are abound in biology and neuroscience. They include spatially distributed cell populations, cilia carpets and neural networks relevant to working memory. In many cases, these systems support a rich variety of patterns of synchrony and disorder with remarkable properties that have not been observed in other continuous media. Such patterns are usually referred to as the coherence-incoherence patterns, but in symmetrically coupled oscillator systems they are also known by the name chimera states. The main goal of this work is to give an overview of different types of collective behaviour in large networks of spatially distributed phase oscillators and to develop mathematical methods for their analysis. We focus on the Kuramoto models for one-, two- and three-dimensional oscillator arrays with nonlocal coupling, where the coupling extends over a range wider than nearest neighbour coupling and depends on separation. We use the fact that, for a special (but still quite general) phase interaction function, the long-term coarse-grained dynamics of the above systems can be described by a certain integro-differential equation that follows from the mathematical approach called the Ott-Antonsen theory. We show that this equation adequately represents all relevant patterns of synchrony and disorder, including stationary, periodically breathing and moving coherence-incoherence patterns. Moreover, we show that this equation can be used to completely solve the existence and stability problem for each of these patterns and to reliably predict their main properties in many application relevant situations.}, language = {en} } @phdthesis{Peter2019, author = {Peter, Franziska}, title = {Transition to synchrony in finite Kuramoto ensembles}, doi = {10.25932/publishup-42916}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-429168}, school = {Universit{\"a}t Potsdam}, pages = {vi, 93}, year = {2019}, abstract = {Synchronisation - die Ann{\"a}herung der Rhythmen gekoppelter selbst oszillierender Systeme - ist ein faszinierendes dynamisches Ph{\"a}nomen, das in vielen biologischen, sozialen und technischen Systemen auftritt. Die vorliegende Arbeit befasst sich mit Synchronisation in endlichen Ensembles schwach gekoppelter selbst-erhaltender Oszillatoren mit unterschiedlichen nat{\"u}rlichen Frequenzen. Das Standardmodell f{\"u}r dieses kollektive Ph{\"a}nomen ist das Kuramoto-Modell - unter anderem aufgrund seiner L{\"o}sbarkeit im thermodynamischen Limes unendlich vieler Oszillatoren. {\"A}hnlich einem thermodynamischen Phasen{\"u}bergang zeigt im Fall unendlich vieler Oszillatoren ein Ordnungsparameter den {\"U}bergang von Inkoh{\"a}renz zu einem partiell synchronen Zustand an, in dem ein Teil der Oszillatoren mit einer gemeinsamen Frequenz rotiert. Im endlichen Fall treten Fluktuationen auf. In dieser Arbeit betrachten wir den bisher wenig beachteten Fall von bis zu wenigen hundert Oszillatoren, unter denen vergleichbar starke Fluktuationen auftreten, bei denen aber ein Vergleich zu Frequenzverteilungen im unendlichen Fall m{\"o}glich ist. Zun{\"a}chst definieren wir einen alternativen Ordnungsparameter zur Feststellung einer kollektiven Mode im endlichen Kuramoto-Modell. Dann pr{\"u}fen wir die Abh{\"a}ngigkeit des Synchronisationsgrades und der mittleren Rotationsfrequenz der kollektiven Mode von Eigenschaften der nat{\"u}rlichen Frequenzverteilung f{\"u}r verschiedene Kopplungsst{\"a}rken. Wir stellen dabei zun{\"a}chst numerisch fest, dass der Synchronisationsgrad stark von der Form der Verteilung (gemessen durch die Kurtosis) und die Rotationsfrequenz der kollektiven Mode stark von der Asymmetrie der Verteilung (gemessen durch die Schiefe) der nat{\"u}rlichen Frequenzen abh{\"a}ngt. Beides k{\"o}nnen wir im thermodynamischen Limes analytisch verifizieren. Mit diesen Ergebnissen k{\"o}nnen wir Erkenntnisse anderer Autoren besser verstehen und verallgemeinern. Etwas abseits des roten Fadens dieser Arbeit finden wir außerdem einen analytischen Ausdruck f{\"u}r die Volumenkontraktion im Phasenraum. Der zweite Teil der Arbeit konzentriert sich auf den ordnenden Effekt von Fluktuationen, die durch die Endlichkeit des Systems zustande kommen. Im unendlichen Modell sind die Oszillatoren eindeutig in koh{\"a}rent und inkoh{\"a}rent und damit in geordnet und ungeordnet getrennt. Im endlichen Fall k{\"o}nnen die auftretenden Fluktuationen zus{\"a}tzliche Ordnung unter den asynchronen Oszillatoren erzeugen. Das grundlegende Prinzip, die rauschinduzierte Synchronisation, ist aus einer Reihe von Publikationen bekannt. Unter den gekoppelten Oszillatoren n{\"a}hern sich die Phasen aufgrund der Fluktuationen des Ordnungsparameters an, wie wir einerseits direkt numerisch zeigen und andererseits mit einem Synchronisationsmaß aus der gerichteten Statistik zwischen Paaren passiver Oszillatoren nachweisen. Wir bestimmen die Abh{\"a}ngigkeit dieses Synchronisationsmaßes vom Verh{\"a}ltnis von paarweiser nat{\"u}rlicher Frequenzdifferenz zur Varianz der Fluktuationen. Dabei finden wir eine gute {\"U}bereinstimmung mit einem einfachen analytischen Modell, in welchem wir die deterministischen Fluktuationen des Ordnungsparameters durch weißes Rauschen ersetzen.}, language = {en} }