@phdthesis{GonzalezCamargo2016, author = {Gonzalez Camargo, Rodolfo}, title = {Insulin resistance in cancer cachexia and metabolic syndrome}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-100973}, school = {Universit{\"a}t Potsdam}, pages = {104}, year = {2016}, abstract = {The ever-increasing fat content in Western diet, combined with decreased levels of physical activity, greatly enhance the incidence of metabolic-related diseases. Cancer cachexia (CC) and Metabolic syndrome (MetS) are both multifactorial highly complex metabolism related syndromes, whose etiology is not fully understood, as the mechanisms underlying their development are not completely unveiled. Nevertheless, despite being considered "opposite sides", MetS and CC share several common issues such as insulin resistance and low-grade inflammation. In these scenarios, tissue macrophages act as key players, due to their capacity to produce and release inflammatory mediators. One of the main features of MetS is hyperinsulinemia, which is generally associated with an attempt of the β-cell to compensate for diminished insulin sensitivity (insulin resistance). There is growing evidence that hyperinsulinemia per se may contribute to the development of insulin resistance, through the establishment of low grade inflammation in insulin responsive tissues, especially in the liver (as insulin is secreted by the pancreas into the portal circulation). The hypothesis of the present study was that insulin may itself provoke an inflammatory response culminating in diminished hepatic insulin sensitivity. To address this premise, firstly, human cell line U937 differentiated macrophages were exposed to insulin, LPS and PGE2. In these cells, insulin significantly augmented the gene expression of the pro-inflammatory mediators IL-1β, IL-8, CCL2, Oncostatin M (OSM) and microsomal prostaglandin E2 synthase (mPGES1), and of the anti-inflammatory mediator IL-10. Moreover, the synergism between insulin and LPS enhanced the induction provoked by LPS in IL-1β, IL-8, IL-6, CCL2 and TNF-α gene. When combined with PGE2, insulin enhanced the induction provoked by PGE2 in IL-1β, mPGES1 and COX2, and attenuated the inhibition induced by PGE2 in CCL2 and TNF-α gene expression contributing to an enhanced inflammatory response by both mechanisms. Supernatants of insulin-treated U937 macrophages reduced the insulin-dependent induction of glucokinase in hepatocytes by 50\%. Cytokines contained in the supernatant of insulin-treated U937 macrophages also activated hepatocytes ERK1/2, resulting in inhibitory serine phosphorylation of the insulin receptor substrate. Additionally, the transcription factor STAT3 was activated by phosphorylation resulting in the induction of SOCS3, which is capable of interrupting the insulin receptor signal chain. MicroRNAs, non-coding RNAs linked to protein expression regulation, nowadays recognized as active players in the generation of several inflammatory disorders such as cancer and type II diabetes are also of interest. Considering that in cancer cachexia, patients are highly affected by insulin resistance and inflammation, control, non-cachectic and cachectic cancer patients were selected and the respective circulating levels of pro-inflammatory mediators and microRNA-21-5p, a posttranscriptional regulator of STAT3 expression, assessed and correlated. Cachectic patients circulating cytokines IL-6 and IL-8 levels were significantly higher than those of non-cachectic and controls, and the expression of microRNA-21-5p was significantly lower. Additionally, microRNA-21-5p reduced expression correlated negatively with IL-6 plasma levels. These results indicate that hyperinsulinemia per se might contribute to the low grade inflammation prevailing in MetS patients and thereby promote the development of insulin resistance particularly in the liver. Diminished MicroRNA-21-5p expression may enhance inflammation and STAT3 expression in cachectic patients, contributing to the development of insulin resistance.}, language = {en} } @misc{HauffeRathAgyapongetal.2022, author = {Hauffe, Robert and Rath, Michaela and Agyapong, Wilson and Jonas, Wenke and Vogel, Heike and Schulz, Tim Julius and Schwarz, Maria and Kipp, Anna Patricia and Bl{\"u}her, Matthias and Kleinridders, Andr{\´e}}, title = {Obesity Hinders the Protective Effect of Selenite Supplementation on Insulin Signaling}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8372}, doi = {10.25932/publishup-56170}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-561709}, pages = {1 -- 16}, year = {2022}, abstract = {The intake of high-fat diets (HFDs) containing large amounts of saturated long-chain fatty acids leads to obesity, oxidative stress, inflammation, and insulin resistance. The trace element selenium, as a crucial part of antioxidative selenoproteins, can protect against the development of diet-induced insulin resistance in white adipose tissue (WAT) by increasing glutathione peroxidase 3 (GPx3) and insulin receptor (IR) expression. Whether selenite (Se) can attenuate insulin resistance in established lipotoxic and obese conditions is unclear. We confirm that GPX3 mRNA expression in adipose tissue correlates with BMI in humans. Cultivating 3T3-L1 pre-adipocytes in palmitate-containing medium followed by Se treatment attenuates insulin resistance with enhanced GPx3 and IR expression and adipocyte differentiation. However, feeding obese mice a selenium-enriched high-fat diet (SRHFD) only resulted in a modest increase in overall selenoprotein gene expression in WAT in mice with unaltered body weight development, glucose tolerance, and insulin resistance. While Se supplementation improved adipocyte morphology, it did not alter WAT insulin sensitivity. However, mice fed a SRHFD exhibited increased insulin content in the pancreas. Overall, while selenite protects against palmitate-induced insulin resistance in vitro, obesity impedes the effect of selenite on insulin action and adipose tissue metabolism in vivo.}, language = {en} } @misc{KrsticGalhuberSchulzetal.2018, author = {Krstic, Jelena and Galhuber, Markus and Schulz, Tim Julius and Schupp, Michael and Prokesch, Andreas}, title = {p53 as a dichotomous regulator of liver disease}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {963}, issn = {1866-8372}, doi = {10.25932/publishup-46812}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-468127}, pages = {25}, year = {2018}, abstract = {Lifestyle-related disorders, such as the metabolic syndrome, have become a primary risk factor for the development of liver pathologies that can progress from hepatic steatosis, hepatic insulin resistance, steatohepatitis, fibrosis and cirrhosis, to the most severe condition of hepatocellular carcinoma (HCC). While the prevalence of liver pathologies is steadily increasing in modern societies, there are currently no approved drugs other than chemotherapeutic intervention in late stage HCC. Hence, there is a pressing need to identify and investigate causative molecular pathways that can yield new therapeutic avenues. The transcription factor p53 is well established as a tumor suppressor and has recently been described as a central metabolic player both in physiological and pathological settings. Given that liver is a dynamic tissue with direct exposition to ingested nutrients, hepatic p53, by integrating cellular stress response, metabolism and cell cycle regulation, has emerged as an important regulator of liver homeostasis and dysfunction. The underlying evidence is reviewed herein, with a focus on clinical data and animal studies that highlight a direct influence of p53 activity on different stages of liver diseases. Based on current literature showing that activation of p53 signaling can either attenuate or fuel liver disease, we herein discuss the hypothesis that, while hyper-activation or loss of function can cause disease, moderate induction of hepatic p53 within physiological margins could be beneficial in the prevention and treatment of liver pathologies. Hence, stimuli that lead to a moderate and temporary p53 activation could present new therapeutic approaches through several entry points in the cascade from hepatic steatosis to HCC.}, language = {en} } @misc{KrsticReinischSchuppetal.2018, author = {Krstic, Jelena and Reinisch, Isabel and Schupp, Michael and Schulz, Tim Julius and Prokesch, Andreas}, title = {p53 functions in adipose tissue metabolism and homeostasis}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1047}, issn = {1866-8372}, doi = {10.25932/publishup-46906}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-469069}, pages = {21}, year = {2018}, abstract = {As a tumor suppressor and the most frequently mutated gene in cancer, p53 is among the best-described molecules in medical research. As cancer is in most cases an age-related disease, it seems paradoxical that p53 is so strongly conserved from early multicellular organisms to humans. A function not directly related to tumor suppression, such as the regulation of metabolism in nontransformed cells, could explain this selective pressure. While this role of p53 in cellular metabolism is gradually emerging, it is imperative to dissect the tissue-and cell-specific actions of p53 and its downstream signaling pathways. In this review, we focus on studies reporting p53's impact on adipocyte development, function, and maintenance, as well as the causes and consequences of altered p53 levels in white and brown adipose tissue (AT) with respect to systemic energy homeostasis. While whole body p53 knockout mice gain less weight and fat mass under a high-fat diet owing to increased energy expenditure, modifying p53 expression specifically in adipocytes yields more refined insights: (1) p53 is a negative regulator of in vitro adipogenesis; (2) p53 levels in white AT are increased in diet-induced and genetic obesity mouse models and in obese humans; (3) functionally, elevated p53 in white AT increases senescence and chronic inflammation, aggravating systemic insulin resistance; (4) p53 is not required for normal development of brown AT; and (5) when p53 is activated in brown AT in mice fed a high-fat diet, it increases brown AT temperature and brown AT marker gene expression, thereby contributing to reduced fat mass accumulation. In addition, p53 is increasingly being recognized as crucial player in nutrient sensing pathways. Hence, despite existence of contradictory findings and a varying density of evidence, several functions of p53 in adipocytes and ATs have been emerging, positioning p53 as an essential regulatory hub in ATs. Future studies need to make use of more sophisticated in vivo model systems and should identify an AT-specific set of p53 target genes and downstream pathways upon different (nutrient) challenges to identify novel therapeutic targets to curb metabolic diseases.}, language = {en} }