@phdthesis{Barbosa2020, author = {Barbosa, Lu{\´i}s Romero}, title = {Groundwater recharge in tropical wet regions via GIS-based and cosmic-ray neutron sensing}, doi = {10.25932/publishup-46064}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-460641}, school = {Universit{\"a}t Potsdam}, pages = {XXVI, 175}, year = {2020}, abstract = {Studies on the unsustainable use of groundwater resources are still considered incipient since it is frequently a poorly understood and managed, devalued and inadequately protected natural resource. Groundwater Recharge (GWR) is one of the most challenging elements to estimate since it can rarely be measured directly and cannot easily be derived from existing data. To overcome these limitations, many hydro(geo)logists have combined different approaches to estimate large-scale GWR, namely: remote sensing products, such as IMERG product; Water Budget Equation, also in combination with hydrological models, and; Geographic Information System (GIS), using estimation formulas. For intermediary-scale GWR estimation, there exist: Non-invasive Cosmic-Ray Neutron Sensing (CRNS); wireless networks from local soil probes; and soil hydrological models, such as HYDRUS. Accordingly, this PhD thesis aims, on the one hand, to demonstrate a GIS-based model coupling for estimating the GWR distribution on a large scale in tropical wet basins. On the other hand, it aims to use the time series from CRNS and invasive soil moisture probes to inversely calibrate the soil hydraulic properties, and based on this, estimating the intermediary-scale GWR using a soil hydrological model. For such purpose, two tropical wet basins located in a complex sedimentary aquifer in the coastal Northeast region of Brazil were selected. These are the Jo{\~a}o Pessoa Case Study Area and the Guara{\´i}ra Experimental Basin. Several satellite products in the first area were used as input to the GIS-based water budget equation model for estimating the water balance components and GWR in 2016 and 2017. In addition, the point-scale measurement and CRNS data were used in the second area to determine the soil hydraulic properties, and to estimate the GWR in the 2017-2018 and 2018-2019 hydrological years. The resulting values of GWR on large- and intermediary-scale were then compared and validated by the estimates obtained by groundwater table fluctuations. The GWR rates for IMERG- and rain-gauge-based scenarios showed similar coefficients between 68\% and 89\%, similar mean errors between 30\% and 34\%, and slightly-different bias between -13\% and 11\%. The results of GWR rates for soil probes and CRNS soil moisture scenarios ranged from -5.87 to -61.81 cm yr-1, which corresponds to 5\% and 38\% of the precipitation. The calculations of the mean GWR rates on large-scale, based on remote sensing data, and on intermediary-scale, based on CRNS data, held similar results for the Podzol soil type, namely 17.87\% and 17\% of the precipitation. It is then concluded that the proposed methodologies allowed for estimating realistically the GWR over the study areas, which can be a ground-breaking step towards improving the water management and decision-making in the Northeast of Brazil.}, language = {en} } @misc{GeisslerHeblackUuguluetal.2019, author = {Geißler, Katja and Heblack, Jessica and Uugulu, Shoopala and Wanke, Heike and Blaum, Niels}, title = {Partitioning of Water Between Differently Sized Shrubs and Potential Groundwater Recharge in a Semiarid Savanna in Namibia}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {798}, issn = {1866-8372}, doi = {10.25932/publishup-44111}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-441110}, pages = {13}, year = {2019}, abstract = {Introduction: Many semiarid regions around the world are presently experiencing significant changes in both climatic conditions and vegetation. This includes a disturbed coexistence between grasses and bushes also known as bush encroachment, and altered precipitation patterns with larger rain events. Fewer, more intense precipitation events might promote groundwater recharge, but depending on the structure of the vegetation also encourage further woody encroachment. Materials and Methods: In this study, we investigated how patterns and sources of water uptake of Acacia mellifera (blackthorn), an important encroaching woody plant in southern African savannas, are associated with the intensity of rain events and the size of individual shrubs. The study was conducted at a commercial cattle farm in the semiarid Kalahari in Namibia (MAP 250 mm/a). We used soil moisture dynamics in different depths and natural stable isotopes as markers of water sources. Xylem water of fifteen differently sized individuals during eight rain events was extracted using a Scholander pressure bomb. Results and Discussion: Results suggest the main rooting activity zone of A. mellifera in 50 and 75 cm soil depth but a reasonable water uptake from 10 and 25 cm. Any apparent uptake pattern seems to be driven by water availability, not time in the season. Bushes prefer the deeper soil layers after heavier rain events, indicating some evidence for the classical Walter's two-layer hypothesis. However, rain events up to a threshold of 6 mm/day cause shallower depths of use and suggest several phases of intense competition with perennial grasses. The temporal uptake pattern does not depend on shrub size, suggesting a fast upwards water flow inside. d2H and d18O values in xylem water indicate that larger shrubs rely less on upper and very deep soil water than smaller shrubs. It supports the hypothesis that in environments where soil moisture is highly variable in the upper soil layers, the early investment in a deep tap-root to exploit deeper, more reliable water sources could reduce the probability of mortality during the establishment phase. Nevertheless, independent of size and time in the season, bushes do not compete with potential groundwater recharge. In a savanna encroached by A. mellifera, groundwater will most likely be affected indirectly.}, language = {en} } @phdthesis{Natkhin2010, author = {Natkhin, Marco}, title = {Modellgest{\"u}tzte Analyse der Einfl{\"u}sse von Ver{\"a}nderungen der Waldwirtschaft und des Klimas auf den Wasserhaushalt grundwasserabh{\"a}ngiger Landschaftselemente}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-50627}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {In den letzten drei Jahrzehnten wurden in einigen Seen und Feuchtgebieten in bewaldeten Einzugsgebieten Nordost-Brandenburgs sinkende Wasserst{\"a}nde beobachtet. In diesen Gebieten bestimmt die Grundwasserneubildung im Einzugsgebiet maßgeblich das Wasserdargebot der Seen und Feuchtgebiete, die deshalb hier als grundwasserabh{\"a}ngige Landschaftselemente bezeichnet werden. Somit weisen die sinkenden Wasserst{\"a}nde auf einen R{\"u}ckgang der wegen des geringen Niederschlagsdargebotes ohnehin schon geringen Grundwasserneubildung hin. Die H{\"o}he der Grundwasserneubildung ist neben den hydroklimatischen Randbedingungen auch von der Landnutzung abh{\"a}ngig. Ver{\"a}nderungen in der Waldvegetation und der hydroklimatischen Randbedingungen bewirken {\"A}nderungen der Grundwasserneubildung und beeinflussen somit auch den Wasserhaushalt der Seen und Feuchtgebiete. Aktuell wird die Waldvegetation durch Kiefernmonokulturen dominiert, mit im Vergleich zu anderen Baumarten h{\"o}herer Evapotranspiration. Entwicklungen in der Forstwirtschaft streben die Verringerung von Kiefernmonokulturen an. Diese sollen langfristig auf geeigneten Standorten durch Laubmischw{\"a}lder ersetzt werden. Dadurch lassen sich eine geringere Evapotranspiration und damit eine h{\"o}here Grundwasserneubildung erreichen. In der vorliegenden Arbeit werden am Beispiel des Redernswalder Sees und des Briesensees die Ursachen der beobachteten sinkenden Wasserst{\"a}nde analysiert. Ihre Wasserst{\"a}nde nahmen in den letzten 25 Jahren um mehr als 3 Meter ab. Weiterhin wird untersucht, wie die erwarteten Klima{\"a}nderungen und Ver{\"a}nderungen in der Waldbewirtschaftung die zuk{\"u}nftige Grundwasserneubildung und den Wasserhaushalt von Seen beeinflussen k{\"o}nnen. Die Entwicklung der Grundwasserneubildung im Untersuchungsgebiet wurde mit dem Wasserhaushaltsmodell WaSiM-ETH simuliert. Die Analyse der Wechselwirkungen der Seen mit dem regionalen quart{\"a}ren Grundwasserleitersystem erfolgte mit dem 3D-Grundwassermodell FEFLOW. M{\"o}gliche zuk{\"u}nftige Ver{\"a}nderungen der Grundwasserneubildung und der Seewasserst{\"a}nde durch Klima{\"a}nderungen und Waldumbau wurden mit Szenarienrechnungen bis zum Jahr 2100 analysiert. Die modellgest{\"u}tzte Analyse zeigte, dass die beobachteten abnehmenden Wasserst{\"a}nde zu etwa gleichen Anteilen durch Ver{\"a}nderungen der hydroklimatischen Randbedingungen sowie durch Ver{\"a}nderungen in der Waldvegetation und damit abnehmenden Grundwasserneubildungsraten zu erkl{\"a}ren sind. Die zuk{\"u}nftigen Entwicklungen der Grundwasserneubildung und der Wasserst{\"a}nde sind gepr{\"a}gt von sich {\"a}ndernden hydroklimatischen Randbedingungen und einem sukzessiven Wandel der Kiefernbest{\"a}nde zu Laubw{\"a}ldern. Der Waldumbau hat positive Wirkungen auf die Grundwasserneubildung und damit auf die Wasserst{\"a}nde. Damit k{\"o}nnen die Einfl{\"u}sse des eingesetzten REMO-A1B-Klimaszenarios zum Ende des Modellzeitraumes durch den Waldumbau nicht kompensiert werden, das Sinken des Wasserstandes wird jedoch wesentlich reduziert. Bei dem moderateren REMO-B1-Klimaszenario werden die Wasserst{\"a}nde des Jahres 2008 durch den Waldumbau bis zum Jahr 2100 {\"u}berschritten.}, language = {de} }