@misc{Frank2013, type = {Master Thesis}, author = {Frank, Mario}, title = {TEMPLAR : efficient determination of relevant axioms in big formula sets for theorem proving}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-72112}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {This document presents a formula selection system for classical first order theorem proving based on the relevance of formulae for the proof of a conjecture. It is based on unifiability of predicates and is also able to use a linguistic approach for the selection. The scope of the technique is the reduction of the set of formulae and the increase of the amount of provable conjectures in a given time. Since the technique generates a subset of the formula set, it can be used as a preprocessor for automated theorem proving. The document contains the conception, implementation and evaluation of both selection concepts. While the one concept generates a search graph over the negation normal forms or Skolem normal forms of the given formulae, the linguistic concept analyses the formulae and determines frequencies of lexemes and uses a tf-idf weighting algorithm to determine the relevance of the formulae. Though the concept is built for first order logic, it is not limited to it. The concept can be used for higher order and modal logik, too, with minimal adoptions. The system was also evaluated at the world championship of automated theorem provers (CADE ATP Systems Competition, CASC-24) in combination with the leanCoP theorem prover and the evaluation of the results of the CASC and the benchmarks with the problems of the CASC of the year 2012 (CASC-J6) show that the concept of the system has positive impact to the performance of automated theorem provers. Also, the benchmarks with two different theorem provers which use different calculi have shown that the selection is independent from the calculus. Moreover, the concept of TEMPLAR has shown to be competitive to some extent with the concept of SinE and even helped one of the theorem provers to solve problems that were not (or slower) solved with SinE selection in the CASC. Finally, the evaluation implies that the combination of the unification based and linguistic selection yields more improved results though no optimisation was done for the problems.}, language = {en} } @phdthesis{Trompelt2010, author = {Trompelt, Helena}, title = {Production of regular and non-regular verbs : evidence for a lexical entry complexity account}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-061-8}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-42120}, school = {Universit{\"a}t Potsdam}, pages = {x, 168}, year = {2010}, abstract = {The incredible productivity and creativity of language depends on two fundamental resources: a mental lexicon and a mental grammar. Rules of grammar enable us to produce and understand complex phrases we have not encountered before and at the same time constrain the computation of complex expressions. The concepts of the mental lexicon and mental grammar have been thoroughly tested by comparing the use of regular versus non-regular word forms. Regular verbs (e.g. walk-walked) are computed using a suffixation rule in a neural system for grammatical processing; non-regular verbs (run-ran) are retrieved from associative memory. The role of regularity has only been explored for the past tense, where regularity is overtly visible. To explore the representation and encoding of regularity as well as the inflectional processes involved in the production of regular and non-regular verbs, this dissertation investigated three groups of German verbs: regular, irregular and hybrid verbs. Hybrid verbs in German have completely regular conjugation in the present tense and irregular conjugation in the past tense. Articulation latencies were measured while participants named pictures of actions, producing the 3rd person singular of regular, hybrid, and irregular verbs in present and past tense. Studying the production of German verbs in past and present tense, this dissertation explored the complexity of lexical entries as a decisive factor in the production of verbs.}, language = {en} }