@phdthesis{EsmaeeliMoghaddamTabalvandani2022, author = {Esmaeeli Moghaddam Tabalvandani, Mariam}, title = {ROS Generation in Human Aldehyde Oxidase And the Effects of ROS and Reactive Sulfhydryl on the Activity of the Enzyme}, doi = {10.25932/publishup-53460}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-534600}, school = {Universit{\"a}t Potsdam}, pages = {153}, year = {2022}, abstract = {Aldehyde oxidases (AOXs) (E.C. 1.2.3.1) are molybdoflavo-enzymes belonging to the xanthine oxidase (XO) family. AOXs in mammals contain one molybdenum cofactor (Moco), one flavin adenine dinucleotide (FAD) and two [2Fe-2S] clusters, the presence of which is essential for the activity of the enzyme. Human aldehyde oxidase (hAOX1) is a cytosolic enzyme mainly expressed in the liver. hAOX1is involved in the metabolism of xenobiotics. It oxidizes aldehydes to their corresponding carboxylic acids and hydroxylates N-heterocyclic compounds. Since these functional groups are widely present in therapeutics, understanding the behaviour of hAOX1 has important implications in medicine. During the catalytic cycle of hAOX1, the substrate is oxidized at Moco and electrons are internally transferred to FAD via the FeS clusters. An electron acceptor juxtaposed to the FAD receives the electrons and re-oxidizes the enzyme for the next catalytic cycle. Molecular oxygen is the endogenous electron acceptor of hAOX1 and in doing so it is reduced and produces reactive oxygen species (ROS) including hydrogen peroxide (H2O2) and superoxide (O2.-). The production of ROS has patho-physiological importance, as ROS can have a wide range of effects on cell components including the enzyme itself. In this thesis, we have shown that hAOX1 loses its activity over multiple cycles of catalysis due to endogenous ROS production and have identified a cysteine rich motif that protects hAOX1 from the ROS damaging effects. We have also shown that a sulfido ligand, which is bound at Moco and is essential for the catalytic activity of the enzyme, is vulnerable during turnover. The ROS produced during the course of the reaction are also able to remove this sulfido ligand from Moco. ROS, in addition, oxidize particular cysteine residues. The combined effects of ROS on the sulfido ligand and on specific cysteine residues in the enzyme result in its inactivation. Furthermore, we report that small reducing agents containing reactive sulfhydryl groups, in a selective manner, inactivate some of the mammalian AOXs by modifying the sulfido ligand at Moco. The mechanism of ROS production by hAOX1 is another scope that has been investigated as part of the work in this thesis. We have shown that the ratio of type of ROS, i.e. hydrogen peroxide (H2O2) and superoxide (O2.-), produced by hAOX1 is determined by a particular position on a flexible loop that locates in close proximity of FAD. The size of the cavity at the ROS producing site, i.e. the N5 position of the FAD isoalloxazine ring, kinetically affects the amount of each type of ROS generated by hAOX1. Taken together, hAOX1 is an enzyme with emerging importance in pharmacological and medical studies, not only due to its involvement in drug metabolism, but also due to ROS production which has physiological and pathological implications.}, language = {en} }